// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EIGEN_USE_SYCL #include #endif // The following includes of STL headers have to be done _before_ the // definition of macros min() and max(). The reason is that many STL // implementations will not work properly as the min and max symbols collide // with the STL functions std::min() and std::max(). The STL headers may check // for the macro definition of min/max and issue a warning or undefine the // macros. // // Still, Windows defines min() and max() in windef.h as part of the regular // Windows system interfaces and many other Windows APIs depend on these // macros being available. To prevent the macro expansion of min/max and to // make Eigen compatible with the Windows environment all function calls of // std::min() and std::max() have to be written with parenthesis around the // function name. // // All STL headers used by Eigen should be included here. Because main.h is // included before any Eigen header and because the STL headers are guarded // against multiple inclusions, no STL header will see our own min/max macro // definitions. #include #include // Disable ICC's std::complex operator specializations so we can use our own. #define _OVERRIDE_COMPLEX_SPECIALIZATION_ 1 #include #include #include #include #include #if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L) #include #include #endif #if __cplusplus > 201703L // libstdc++ 9's indirectly uses max() via . // libstdc++ 10's indirectly uses max() via ranges headers. #include // libstdc++ 11's indirectly uses max() via semaphore headers. #include #endif // Configure GPU. #if defined(EIGEN_USE_HIP) #if defined(__HIPCC__) && !defined(EIGEN_NO_HIP) #define EIGEN_HIPCC __HIPCC__ #include #include #endif #elif defined(__CUDACC__) && !defined(EIGEN_NO_CUDA) #define EIGEN_CUDACC __CUDACC__ #include #include #include #if CUDA_VERSION >= 7050 #include #endif #endif #if defined(EIGEN_CUDACC) || defined(EIGEN_HIPCC) #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #endif // To test that all calls from Eigen code to std::min() and std::max() are // protected by parenthesis against macro expansion, the min()/max() macros // are defined here and any not-parenthesized min/max call will cause a // compiler error. #if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL) && !defined(EIGEN_POCKETFFT_DEFAULT) // // HIP header files include the following files // // // // which seem to contain not-parenthesized calls to "max"/"min", triggering the following check and causing the compile // to fail // // Including those header files before the following macro definition for "min" / "max", only partially resolves the // issue This is because other HIP header files also define "isnan" / "isinf" / "isfinite" functions, which are needed // in other headers. // // So instead choosing to simply disable this check for HIP // #define min(A, B) please_protect_your_min_with_parentheses #define max(A, B) please_protect_your_max_with_parentheses #define isnan(X) please_protect_your_isnan_with_parentheses #define isinf(X) please_protect_your_isinf_with_parentheses #define isfinite(X) please_protect_your_isfinite_with_parentheses #endif // test possible conflicts struct real {}; struct imag {}; #ifdef M_PI #undef M_PI #endif #define M_PI please_use_EIGEN_PI_instead_of_M_PI #define FORBIDDEN_IDENTIFIER \ (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes // B0 is defined in POSIX header termios.h #define B0 FORBIDDEN_IDENTIFIER #define I FORBIDDEN_IDENTIFIER // _res is defined by resolv.h #define _res FORBIDDEN_IDENTIFIER // Unit tests calling Eigen's blas library must preserve the default blocking size // to avoid troubles. #ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS #define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS #endif // shuts down ICC's remark #593: variable "XXX" was set but never used #define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X) #ifdef TEST_ENABLE_TEMPORARY_TRACKING static long int nb_temporaries; static long int nb_temporaries_on_assert = -1; #ifdef TEST_IGNORE_STACK_ALLOCATED_TEMPORARY inline void on_temporary_creation(long int size, int SizeAtCompileTime) { // ignore stack-allocated temporaries if (SizeAtCompileTime != -1) return; #else inline void on_temporary_creation(long int size, int) { #endif // here's a great place to set a breakpoint when debugging failures in this test! if (size != 0) nb_temporaries++; if (nb_temporaries_on_assert > 0) assert(nb_temporaries < nb_temporaries_on_assert); } #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN \ { on_temporary_creation(size, Size); } #define VERIFY_EVALUATION_COUNT(XPR, N) \ { \ nb_temporaries = 0; \ XPR; \ if (nb_temporaries != (N)) { \ std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ } \ VERIFY((#XPR) && nb_temporaries == (N)); \ } #endif #include "split_test_helper.h" #ifdef NDEBUG #undef NDEBUG #endif // On windows CE, NDEBUG is automatically defined if NDEBUG is not defined. #ifndef DEBUG #define DEBUG #endif #define DEFAULT_REPEAT 10 namespace Eigen { static std::vector g_test_stack; // level == 0 <=> abort if test fail // level >= 1 <=> warning message to std::cerr if test fail static int g_test_level = 0; static int g_repeat = 1; static unsigned int g_seed = 0; static bool g_has_set_repeat = false, g_has_set_seed = false; class EigenTest { public: EigenTest() : m_func(0) {} EigenTest(const char* a_name, void (*func)(void)) : m_name(a_name), m_func(func) { get_registered_tests().push_back(this); } const std::string& name() const { return m_name; } void operator()() const { m_func(); } static const std::vector& all() { return get_registered_tests(); } protected: static std::vector& get_registered_tests() { static std::vector* ms_registered_tests = new std::vector(); return *ms_registered_tests; } std::string m_name; void (*m_func)(void); }; // Declare and register a test, e.g.: // EIGEN_DECLARE_TEST(mytest) { ... } // will create a function: // void test_mytest() { ... } // that will be automatically called. #define EIGEN_DECLARE_TEST(X) \ void EIGEN_CAT(test_, X)(); \ static EigenTest EIGEN_CAT(test_handler_, X)(EIGEN_MAKESTRING(X), &EIGEN_CAT(test_, X)); \ void EIGEN_CAT(test_, X)() } // namespace Eigen #define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") #if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) && \ !defined(__SYCL_DEVICE_ONLY__) #define EIGEN_EXCEPTIONS #endif #ifndef EIGEN_NO_ASSERTION_CHECKING namespace Eigen { static const bool should_raise_an_assert = false; // Used to avoid to raise two exceptions at a time in which // case the exception is not properly caught. // This may happen when a second exceptions is triggered in a destructor. static bool no_more_assert = false; static bool report_on_cerr_on_assert_failure = true; struct eigen_assert_exception { eigen_assert_exception(void) {} ~eigen_assert_exception() { Eigen::no_more_assert = false; } }; struct eigen_static_assert_exception { eigen_static_assert_exception(void) {} ~eigen_static_assert_exception() { Eigen::no_more_assert = false; } }; } // namespace Eigen // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while // one should have been, then the list of executed assertions is printed out. // // EIGEN_DEBUG_ASSERTS is not enabled by default as it // significantly increases the compilation time // and might even introduce side effects that would hide // some memory errors. #ifdef EIGEN_DEBUG_ASSERTS namespace Eigen { namespace internal { static bool push_assert = false; } static std::vector eigen_assert_list; } // namespace Eigen #define eigen_assert(a) \ if ((!(a)) && (!no_more_assert)) { \ if (report_on_cerr_on_assert_failure) std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ Eigen::no_more_assert = true; \ EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ } else if (Eigen::internal::push_assert) { \ eigen_assert_list.push_back(std::string(EIGEN_MAKESTRING(__FILE__) " (" EIGEN_MAKESTRING(__LINE__) ") : " #a)); \ } #ifdef EIGEN_EXCEPTIONS #define VERIFY_RAISES_ASSERT(a) \ { \ Eigen::no_more_assert = false; \ Eigen::eigen_assert_list.clear(); \ Eigen::internal::push_assert = true; \ Eigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ std::cerr << "One of the following asserts should have been triggered:\n"; \ for (uint ai = 0; ai < eigen_assert_list.size(); ++ai) std::cerr << " " << eigen_assert_list[ai] << "\n"; \ VERIFY(Eigen::should_raise_an_assert&& #a); \ } catch (Eigen::eigen_assert_exception) { \ Eigen::internal::push_assert = false; \ VERIFY(true); \ } \ Eigen::report_on_cerr_on_assert_failure = true; \ Eigen::internal::push_assert = false; \ } #endif // EIGEN_EXCEPTIONS #elif !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(__SYCL_DEVICE_ONLY__) // EIGEN_DEBUG_ASSERTS #define eigen_assert(a) \ if ((!(a)) && (!no_more_assert)) { \ Eigen::no_more_assert = true; \ if (report_on_cerr_on_assert_failure) { \ eigen_plain_assert(a); \ } else { \ EIGEN_THROW_X(Eigen::eigen_assert_exception()); \ } \ } #ifdef EIGEN_EXCEPTIONS #define VERIFY_RAISES_ASSERT(a) \ { \ Eigen::no_more_assert = false; \ Eigen::report_on_cerr_on_assert_failure = false; \ try { \ a; \ VERIFY(Eigen::should_raise_an_assert&& #a); \ } catch (Eigen::eigen_assert_exception&) { \ VERIFY(true); \ } \ Eigen::report_on_cerr_on_assert_failure = true; \ } #endif // EIGEN_EXCEPTIONS #endif // EIGEN_DEBUG_ASSERTS #ifndef VERIFY_RAISES_ASSERT #define VERIFY_RAISES_ASSERT(a) std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n"; #endif #if !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY) #define EIGEN_USE_CUSTOM_ASSERT #endif #else // EIGEN_NO_ASSERTION_CHECKING #define VERIFY_RAISES_ASSERT(a) \ {} #endif // EIGEN_NO_ASSERTION_CHECKING #if !defined(EIGEN_TESTING_CONSTEXPR) && !defined(EIGEN_TESTING_PLAINOBJECT_CTOR) #define EIGEN_INTERNAL_DEBUGGING #endif #include // required for createRandomPIMatrixOfRank and generateRandomMatrixSvs inline void verify_impl(bool condition, const char* testname, const char* file, int line, const char* condition_as_string) { if (!condition) { if (Eigen::g_test_level > 0) std::cerr << "WARNING: "; std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" << std::endl << " " << condition_as_string << std::endl; std::cerr << "Stack:\n"; const int test_stack_size = static_cast(Eigen::g_test_stack.size()); for (int i = test_stack_size - 1; i >= 0; --i) std::cerr << " - " << Eigen::g_test_stack[i] << "\n"; std::cerr << "\n"; if (Eigen::g_test_level == 0) abort(); } } #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a)) #define VERIFY_GE(a, b) ::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a >= b)) #define VERIFY_LE(a, b) ::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, EIGEN_MAKESTRING(a <= b)) #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true)) #define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false)) #define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b)) #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) #define VERIFY_IS_CWISE_EQUAL(a, b) VERIFY(verifyIsCwiseApprox(a, b, true)) #define VERIFY_IS_CWISE_APPROX(a, b) VERIFY(verifyIsCwiseApprox(a, b, false)) #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) #define STATIC_CHECK(COND) EIGEN_STATIC_ASSERT((COND), EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT) #define CALL_SUBTEST(FUNC) \ do { \ g_test_stack.push_back(EIGEN_MAKESTRING(FUNC)); \ FUNC; \ g_test_stack.pop_back(); \ } while (0) // Forward declarations to avoid ICC warnings #if EIGEN_COMP_ICC template std::string type_name(); namespace Eigen { template bool test_is_equal(const T& actual, const U& expected, bool expect_equal = true); } // end namespace Eigen #endif // EIGEN_COMP_ICC namespace Eigen { template std::enable_if_t::value, bool> is_same_type(const T1&, const T2&) { return true; } template inline typename NumTraits::Real test_precision() { return NumTraits::dummy_precision(); } template <> inline float test_precision() { return 1e-3f; } template <> inline double test_precision() { return 1e-6; } template <> inline long double test_precision() { return 1e-6l; } template <> inline float test_precision >() { return test_precision(); } template <> inline double test_precision >() { return test_precision(); } template <> inline long double test_precision >() { return test_precision(); } #define EIGEN_TEST_SCALAR_TEST_OVERLOAD(TYPE) \ inline bool test_isApprox(TYPE a, TYPE b) { \ return numext::equal_strict(a, b) || ((numext::isnan)(a) && (numext::isnan)(b)) || \ (internal::isApprox(a, b, test_precision())); \ } \ inline bool test_isCwiseApprox(TYPE a, TYPE b, bool exact) { \ return numext::equal_strict(a, b) || ((numext::isnan)(a) && (numext::isnan)(b)) || \ (!exact && internal::isApprox(a, b, test_precision())); \ } \ inline bool test_isMuchSmallerThan(TYPE a, TYPE b) { \ return internal::isMuchSmallerThan(a, b, test_precision()); \ } \ inline bool test_isApproxOrLessThan(TYPE a, TYPE b) { \ return internal::isApproxOrLessThan(a, b, test_precision()); \ } EIGEN_TEST_SCALAR_TEST_OVERLOAD(short) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short) EIGEN_TEST_SCALAR_TEST_OVERLOAD(int) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned int) EIGEN_TEST_SCALAR_TEST_OVERLOAD(long) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long) EIGEN_TEST_SCALAR_TEST_OVERLOAD(long long) EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long long) EIGEN_TEST_SCALAR_TEST_OVERLOAD(float) EIGEN_TEST_SCALAR_TEST_OVERLOAD(double) EIGEN_TEST_SCALAR_TEST_OVERLOAD(half) EIGEN_TEST_SCALAR_TEST_OVERLOAD(bfloat16) #undef EIGEN_TEST_SCALAR_TEST_OVERLOAD #ifndef EIGEN_TEST_NO_COMPLEX inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } #ifndef EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const std::complex& a, const std::complex& b) { return internal::isApprox(a, b, test_precision >()); } inline bool test_isMuchSmallerThan(const std::complex& a, const std::complex& b) { return internal::isMuchSmallerThan(a, b, test_precision >()); } #endif #endif #ifndef EIGEN_TEST_NO_LONGDOUBLE inline bool test_isApprox(const long double& a, const long double& b) { bool ret = internal::isApprox(a, b, test_precision()); if (!ret) std::cerr << std::endl << " actual = " << a << std::endl << " expected = " << b << std::endl << std::endl; return ret; } inline bool test_isMuchSmallerThan(const long double& a, const long double& b) { return internal::isMuchSmallerThan(a, b, test_precision()); } inline bool test_isApproxOrLessThan(const long double& a, const long double& b) { return internal::isApproxOrLessThan(a, b, test_precision()); } #endif // EIGEN_TEST_NO_LONGDOUBLE // test_relative_error returns the relative difference between a and b as a real scalar as used in isApprox. template typename NumTraits::NonInteger test_relative_error(const EigenBase& a, const EigenBase& b) { using std::sqrt; typedef typename NumTraits::NonInteger RealScalar; typename internal::nested_eval::type ea(a.derived()); typename internal::nested_eval::type eb(b.derived()); return sqrt(RealScalar((ea.matrix() - eb.matrix()).cwiseAbs2().sum()) / RealScalar((std::min)(eb.cwiseAbs2().sum(), ea.cwiseAbs2().sum()))); } template typename T1::RealScalar test_relative_error(const T1& a, const T2& b, const typename T1::Coefficients* = 0) { return test_relative_error(a.coeffs(), b.coeffs()); } template typename T1::Scalar test_relative_error(const T1& a, const T2& b, const typename T1::MatrixType* = 0) { return test_relative_error(a.matrix(), b.matrix()); } template S test_relative_error(const Translation& a, const Translation& b) { return test_relative_error(a.vector(), b.vector()); } template S test_relative_error(const ParametrizedLine& a, const ParametrizedLine& b) { return (std::max)(test_relative_error(a.origin(), b.origin()), test_relative_error(a.origin(), b.origin())); } template S test_relative_error(const AlignedBox& a, const AlignedBox& b) { return (std::max)(test_relative_error((a.min)(), (b.min)()), test_relative_error((a.max)(), (b.max)())); } template class SparseMatrixBase; template typename T1::RealScalar test_relative_error(const MatrixBase& a, const SparseMatrixBase& b) { return test_relative_error(a, b.toDense()); } template class SparseMatrixBase; template typename T1::RealScalar test_relative_error(const SparseMatrixBase& a, const MatrixBase& b) { return test_relative_error(a.toDense(), b); } template class SparseMatrixBase; template typename T1::RealScalar test_relative_error(const SparseMatrixBase& a, const SparseMatrixBase& b) { return test_relative_error(a.toDense(), b.toDense()); } template typename NumTraits::Real>::NonInteger test_relative_error( const T1& a, const T2& b, std::enable_if_t::Real>::value, T1>* = 0) { typedef typename NumTraits::Real>::NonInteger RealScalar; return numext::sqrt(RealScalar(numext::abs2(a - b)) / (numext::mini)(RealScalar(numext::abs2(a)), RealScalar(numext::abs2(b)))); } template T test_relative_error(const Rotation2D& a, const Rotation2D& b) { return test_relative_error(a.angle(), b.angle()); } template T test_relative_error(const AngleAxis& a, const AngleAxis& b) { return (std::max)(test_relative_error(a.angle(), b.angle()), test_relative_error(a.axis(), b.axis())); } template inline bool test_isApprox(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only { return a.isApprox(b, test_precision()); } // get_test_precision is a small wrapper to test_precision allowing to return the scalar precision for either scalars or // expressions template typename NumTraits::Real get_test_precision(const T&, const typename T::Scalar* = 0) { return test_precision::Real>(); } template typename NumTraits::Real get_test_precision( const T&, std::enable_if_t::Real>::value, T>* = 0) { return test_precision::Real>(); } // verifyIsApprox is a wrapper to test_isApprox that outputs the relative difference magnitude if the test fails. template inline bool verifyIsApprox(const Type1& a, const Type2& b) { bool ret = test_isApprox(a, b); if (!ret) { std::cerr << "Difference too large wrt tolerance " << get_test_precision(a) << ", relative error is: " << test_relative_error(a, b) << std::endl; } return ret; } // verifyIsCwiseApprox is a wrapper to test_isCwiseApprox that outputs the relative difference magnitude if the test // fails. template inline bool verifyIsCwiseApprox(const Type1& a, const Type2& b, bool exact) { bool ret = test_isCwiseApprox(a, b, exact); if (!ret) { if (exact) { std::cerr << "Values are not an exact match"; } else { std::cerr << "Difference too large wrt tolerance " << get_test_precision(a); } std::cerr << ", relative error is: " << test_relative_error(a, b) << std::endl; } return ret; } // The idea behind this function is to compare the two scalars a and b where // the scalar ref is a hint about the expected order of magnitude of a and b. // WARNING: the scalar a and b must be positive // Therefore, if for some reason a and b are very small compared to ref, // we won't issue a false negative. // This test could be: abs(a-b) <= eps * ref // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error. template inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) { return test_isApprox(a + ref, b + ref); } template inline bool test_isMuchSmallerThan(const MatrixBase& m1, const MatrixBase& m2) { return m1.isMuchSmallerThan(m2, test_precision::Scalar>()); } template inline bool test_isMuchSmallerThan(const MatrixBase& m, const typename NumTraits::Scalar>::Real& s) { return m.isMuchSmallerThan(s, test_precision::Scalar>()); } template inline bool test_isUnitary(const MatrixBase& m) { return m.isUnitary(test_precision::Scalar>()); } // Checks component-wise, works with infs and nans. template bool test_isCwiseApprox(const DenseBase& m1, const DenseBase& m2, bool exact) { if (m1.rows() != m2.rows()) { return false; } if (m1.cols() != m2.cols()) { return false; } for (Index r = 0; r < m1.rows(); ++r) { for (Index c = 0; c < m1.cols(); ++c) { if (m1(r, c) != m2(r, c) && !((numext::isnan)(m1(r, c)) && (numext::isnan)(m2(r, c))) && (exact || !test_isApprox(m1(r, c), m2(r, c)))) { return false; } } } return true; } template bool test_isCwiseApprox(const SparseMatrixBase& m1, const SparseMatrixBase& m2, bool exact) { return test_isCwiseApprox(m1.toDense(), m2.toDense(), exact); } template bool test_is_equal(const T& actual, const U& expected, bool expect_equal) { if (numext::equal_strict(actual, expected) == expect_equal) return true; // false: std::cerr << "\n actual = " << actual << "\n expected " << (expect_equal ? "= " : "!=") << expected << "\n\n"; return false; } /** * Check if number is "not a number" (NaN). * * @tparam T input type * @param x input value * @return true, if input value is "not a number" (NaN) */ template bool isNotNaN(const T& x) { return x == x; } /** * Check if number is plus infinity. * * @tparam T input type * @param x input value * @return true, if input value is plus infinity */ template bool isPlusInf(const T& x) { return x > NumTraits::highest(); } /** * Check if number is minus infinity. * * @tparam T input type * @param x input value * @return true, if input value is minus infinity */ template bool isMinusInf(const T& x) { return x < NumTraits::lowest(); } } // end namespace Eigen #include "random_matrix_helper.h" template struct GetDifferentType; template <> struct GetDifferentType { typedef double type; }; template <> struct GetDifferentType { typedef float type; }; template struct GetDifferentType > { typedef std::complex::type> type; }; template std::string type_name(T) { return typeid(T).name(); } template <> std::string type_name(float) { return "float"; } template <> std::string type_name(double) { return "double"; } template <> std::string type_name(long double) { return "long double"; } template <> std::string type_name(Eigen::half) { return "half"; } template <> std::string type_name(Eigen::bfloat16) { return "bfloat16"; } template <> std::string type_name(int8_t) { return "int8_t"; } template <> std::string type_name(int16_t) { return "int16_t"; } template <> std::string type_name(int32_t) { return "int32_t"; } template <> std::string type_name(int64_t) { return "int64_t"; } template <> std::string type_name(uint8_t) { return "uint8_t"; } template <> std::string type_name(uint16_t) { return "uint16_t"; } template <> std::string type_name(uint32_t) { return "uint32_t"; } template <> std::string type_name(uint64_t) { return "uint64_t"; } template <> std::string type_name >(std::complex) { return "complex"; } template <> std::string type_name >(std::complex) { return "complex"; } template <> std::string type_name >(std::complex) { return "complex"; } template <> std::string type_name >(std::complex) { return "complex"; } template std::string type_name() { return type_name(T()); } using namespace Eigen; /** * Set number of repetitions for unit test from input string. * * @param str input string */ inline void set_repeat_from_string(const char* str) { errno = 0; g_repeat = int(strtoul(str, 0, 10)); if (errno || g_repeat <= 0) { std::cout << "Invalid repeat value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_repeat = true; } /** * Set seed for randomized unit tests from input string. * * @param str input string */ inline void set_seed_from_string(const char* str) { errno = 0; g_seed = int(strtoul(str, 0, 10)); if (errno || g_seed == 0) { std::cout << "Invalid seed value " << str << std::endl; exit(EXIT_FAILURE); } g_has_set_seed = true; } int main(int argc, char* argv[]) { g_has_set_repeat = false; g_has_set_seed = false; bool need_help = false; for (int i = 1; i < argc; i++) { if (argv[i][0] == 'r') { if (g_has_set_repeat) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_repeat_from_string(argv[i] + 1); } else if (argv[i][0] == 's') { if (g_has_set_seed) { std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; return 1; } set_seed_from_string(argv[i] + 1); } else { need_help = true; } } if (need_help) { std::cout << "This test application takes the following optional arguments:" << std::endl; std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; std::cout << std::endl; std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; std::cout << "will be used as default values for these parameters." << std::endl; return 1; } char* env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); if (!g_has_set_repeat && env_EIGEN_REPEAT) set_repeat_from_string(env_EIGEN_REPEAT); char* env_EIGEN_SEED = getenv("EIGEN_SEED"); if (!g_has_set_seed && env_EIGEN_SEED) set_seed_from_string(env_EIGEN_SEED); if (!g_has_set_seed) g_seed = (unsigned int)time(NULL); if (!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; std::cout << "Initializing random number generator with seed " << g_seed << std::endl; std::stringstream ss; ss << "Seed: " << g_seed; g_test_stack.push_back(ss.str()); srand(g_seed); std::cout << "Repeating each test " << g_repeat << " times" << std::endl; VERIFY(EigenTest::all().size() > 0); for (std::size_t i = 0; i < EigenTest::all().size(); ++i) { const EigenTest& current_test = *EigenTest::all()[i]; Eigen::g_test_stack.push_back(current_test.name()); current_test(); Eigen::g_test_stack.pop_back(); } return 0; } // These warning are disabled here such that they are still ON when parsing Eigen's header files. #if defined __INTEL_COMPILER // remark #383: value copied to temporary, reference to temporary used // -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a // std::vector // remark #1418: external function definition with no prior declaration // -> this warning is raised for all our test functions. Declaring them static would fix the issue. // warning #279: controlling expression is constant // remark #1572: floating-point equality and inequality comparisons are unreliable #pragma warning disable 279 383 1418 1572 #endif #ifdef _MSC_VER // 4503 - decorated name length exceeded, name was truncated #pragma warning(disable : 4503) #endif #include "gpu_test_helper.h"