// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010-2011 Jitse Niesen // Copyright (C) 2016 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template bool equalsIdentity(const MatrixType& A) { bool offDiagOK = true; for (Index i = 0; i < A.rows(); ++i) { for (Index j = i + 1; j < A.cols(); ++j) { offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); } } for (Index i = 0; i < A.rows(); ++i) { for (Index j = 0; j < (std::min)(i, A.cols()); ++j) { offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); } } bool diagOK = (A.diagonal().array() == 1).all(); return offDiagOK && diagOK; } template void check_extremity_accuracy(const VectorType& v, const typename VectorType::Scalar& low, const typename VectorType::Scalar& high) { typedef typename VectorType::Scalar Scalar; typedef typename VectorType::RealScalar RealScalar; RealScalar prec = internal::is_same::value ? NumTraits::dummy_precision() * 10 : NumTraits::dummy_precision() / 10; Index size = v.size(); if (size < 20) return; for (int i = 0; i < size; ++i) { if (i < 5 || i > size - 6) { Scalar ref = (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1); if (std::abs(ref) > 1) { if (!internal::isApprox(v(i), ref, prec)) std::cout << v(i) << " != " << ref << " ; relative error: " << std::abs((v(i) - ref) / ref) << " ; required precision: " << prec << " ; range: " << low << "," << high << " ; i: " << i << "\n"; VERIFY(internal::isApprox( v(i), (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1), prec)); } } } } template void testVectorType(const VectorType& base) { typedef typename VectorType::Scalar Scalar; typedef typename VectorType::RealScalar RealScalar; const Index size = base.size(); Scalar high = internal::random(-500, 500); Scalar low = (size == 1 ? high : internal::random(-500, 500)); if (numext::real(low) > numext::real(high)) std::swap(low, high); // check low==high if (internal::random(0.f, 1.f) < 0.05f) low = high; // check abs(low) >> abs(high) else if (size > 2 && std::numeric_limits::max_exponent10 > 0 && internal::random(0.f, 1.f) < 0.1f) low = -internal::random(1, 2) * RealScalar(std::pow(RealScalar(10), std::numeric_limits::max_exponent10 / 2)); const Scalar step = ((size == 1) ? 1 : (high - low) / RealScalar(size - 1)); // check whether the result yields what we expect it to do VectorType m(base), o(base); m.setLinSpaced(size, low, high); o.setEqualSpaced(size, low, step); if (!NumTraits::IsInteger) { VectorType n(size); for (int i = 0; i < size; ++i) n(i) = low + RealScalar(i) * step; VERIFY_IS_APPROX(m, n); VERIFY_IS_APPROX(n, o); CALL_SUBTEST(check_extremity_accuracy(m, low, high)); } RealScalar range_length = numext::real(high - low); if ((!NumTraits::IsInteger) || (range_length >= size && (Index(range_length) % (size - 1)) == 0) || (Index(range_length + 1) < size && (size % Index(range_length + 1)) == 0)) { VectorType n(size); if ((!NumTraits::IsInteger) || (range_length >= size)) for (int i = 0; i < size; ++i) n(i) = size == 1 ? low : (low + ((high - low) * Scalar(i)) / RealScalar(size - 1)); else for (int i = 0; i < size; ++i) n(i) = size == 1 ? low : low + Scalar((double(range_length + 1) * double(i)) / double(size)); VERIFY_IS_APPROX(m, n); // random access version m = VectorType::LinSpaced(size, low, high); VERIFY_IS_APPROX(m, n); VERIFY(internal::isApprox(m(m.size() - 1), high)); VERIFY(size == 1 || internal::isApprox(m(0), low)); VERIFY_IS_EQUAL(m(m.size() - 1), high); if (!NumTraits::IsInteger) CALL_SUBTEST(check_extremity_accuracy(m, low, high)); } VERIFY(numext::real(m(m.size() - 1)) <= numext::real(high)); VERIFY((m.array().real() <= numext::real(high)).all()); VERIFY((m.array().real() >= numext::real(low)).all()); VERIFY(numext::real(m(m.size() - 1)) >= numext::real(low)); if (size >= 1) { VERIFY(internal::isApprox(m(0), low)); VERIFY_IS_EQUAL(m(0), low); } // check whether everything works with row and col major vectors Matrix row_vector(size); Matrix col_vector(size); row_vector.setLinSpaced(size, low, high); col_vector.setLinSpaced(size, low, high); // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit // when computing the squared sum in isApprox, thus the 2x factor. VERIFY(row_vector.isApprox(col_vector.transpose(), RealScalar(2) * NumTraits::epsilon())); Matrix size_changer(size + 50); size_changer.setLinSpaced(size, low, high); VERIFY(size_changer.size() == size); typedef Matrix ScalarMatrix; ScalarMatrix scalar; scalar.setLinSpaced(1, low, high); VERIFY_IS_APPROX(scalar, ScalarMatrix::Constant(high)); VERIFY_IS_APPROX(ScalarMatrix::LinSpaced(1, low, high), ScalarMatrix::Constant(high)); // regression test for bug 526 (linear vectorized transversal) if (size > 1 && (!NumTraits::IsInteger)) { m.tail(size - 1).setLinSpaced(low, high); VERIFY_IS_APPROX(m(size - 1), high); } // regression test for bug 1383 (LinSpaced with empty size/range) { Index n0 = VectorType::SizeAtCompileTime == Dynamic ? 0 : VectorType::SizeAtCompileTime; low = internal::random(); m = VectorType::LinSpaced(n0, low, low - RealScalar(1)); VERIFY(m.size() == n0); if (VectorType::SizeAtCompileTime == Dynamic) { VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, 0, Scalar(n0 - 1)).sum(), Scalar(0)); VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, low, low - RealScalar(1)).sum(), Scalar(0)); } m.setLinSpaced(n0, 0, Scalar(n0 - 1)); VERIFY(m.size() == n0); m.setLinSpaced(n0, low, low - RealScalar(1)); VERIFY(m.size() == n0); // empty range only: VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low), VectorType::Constant(size, low)); m.setLinSpaced(size, low, low); VERIFY_IS_APPROX(m, VectorType::Constant(size, low)); if (NumTraits::IsInteger) { VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar(size - 1)), VectorType::LinSpaced(size, low + Scalar(size - 1), low).reverse()); if (VectorType::SizeAtCompileTime == Dynamic) { // Check negative multiplicator path: for (Index k = 1; k < 5; ++k) VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar((size - 1) * k)), VectorType::LinSpaced(size, low + Scalar((size - 1) * k), low).reverse()); // Check negative divisor path: for (Index k = 1; k < 5; ++k) VERIFY_IS_APPROX(VectorType::LinSpaced(size * k, low, low + Scalar(size - 1)), VectorType::LinSpaced(size * k, low + Scalar(size - 1), low).reverse()); } } } // test setUnit() if (m.size() > 0) { for (Index k = 0; k < 10; ++k) { Index i = internal::random(0, m.size() - 1); m.setUnit(i); VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i)); } if (VectorType::SizeAtCompileTime == Dynamic) { Index i = internal::random(0, 2 * m.size() - 1); m.setUnit(2 * m.size(), i); VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i)); } } } template void testMatrixType(const MatrixType& m) { using std::abs; const Index rows = m.rows(); const Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Scalar s1; do { s1 = internal::random(); } while (abs(s1) < RealScalar(1e-5) && (!NumTraits::IsInteger)); MatrixType A; A.setIdentity(rows, cols); VERIFY(equalsIdentity(A)); VERIFY(equalsIdentity(MatrixType::Identity(rows, cols))); A = MatrixType::Constant(rows, cols, s1); Index i = internal::random(0, rows - 1); Index j = internal::random(0, cols - 1); VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1)(i, j), s1); VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1).coeff(i, j), s1); VERIFY_IS_APPROX(A(i, j), s1); } template void bug79() { // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). VERIFY((MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits::epsilon()); } template void bug1630() { Array4d x4 = Array4d::LinSpaced(0.0, 1.0); Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3)); VERIFY_IS_APPROX(x4.head(3), x3); } template void nullary_overflow() { // Check possible overflow issue int n = 60000; ArrayXi a1(n), a2(n), a_ref(n); a1.setLinSpaced(n, 0, n - 1); a2.setEqualSpaced(n, 0, 1); for (int i = 0; i < n; ++i) a_ref(i) = i; VERIFY_IS_APPROX(a1, a_ref); VERIFY_IS_APPROX(a2, a_ref); } template void nullary_internal_logic() { // check some internal logic VERIFY((internal::has_nullary_operator >::value)); VERIFY((!internal::has_unary_operator >::value)); VERIFY((!internal::has_binary_operator >::value)); VERIFY((internal::functor_has_linear_access >::ret)); VERIFY((!internal::has_nullary_operator >::value)); VERIFY((!internal::has_unary_operator >::value)); VERIFY((internal::has_binary_operator >::value)); VERIFY((!internal::functor_has_linear_access >::ret)); VERIFY((!internal::has_nullary_operator >::value)); VERIFY((internal::has_unary_operator >::value)); VERIFY((!internal::has_binary_operator >::value)); VERIFY((internal::functor_has_linear_access >::ret)); // Regression unit test for a weird MSVC bug. // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details. // See also traits::match. { MatrixXf A = MatrixXf::Random(3, 3); Ref R = 2.0 * A; VERIFY_IS_APPROX(R, A + A); Ref R1 = MatrixXf::Random(3, 3) + A; VectorXi V = VectorXi::Random(3); Ref R2 = VectorXi::LinSpaced(3, 1, 3) + V; VERIFY_IS_APPROX(R2, V + Vector3i(1, 2, 3)); VERIFY((internal::has_nullary_operator >::value)); VERIFY((!internal::has_unary_operator >::value)); VERIFY((!internal::has_binary_operator >::value)); VERIFY((internal::functor_has_linear_access >::ret)); VERIFY((!internal::has_nullary_operator >::value)); VERIFY((internal::has_unary_operator >::value)); VERIFY((!internal::has_binary_operator >::value)); VERIFY((internal::functor_has_linear_access >::ret)); } } EIGEN_DECLARE_TEST(nullary) { CALL_SUBTEST_1(testMatrixType(Matrix2d())); CALL_SUBTEST_2(testMatrixType(MatrixXcf(internal::random(1, 300), internal::random(1, 300)))); CALL_SUBTEST_3(testMatrixType(MatrixXf(internal::random(1, 300), internal::random(1, 300)))); for (int i = 0; i < g_repeat * 10; i++) { CALL_SUBTEST_3(testVectorType(VectorXcd(internal::random(1, 30000)))); CALL_SUBTEST_4(testVectorType(VectorXd(internal::random(1, 30000)))); CALL_SUBTEST_5(testVectorType(Vector4d())); // regression test for bug 232 CALL_SUBTEST_6(testVectorType(Vector3d())); CALL_SUBTEST_7(testVectorType(VectorXf(internal::random(1, 30000)))); CALL_SUBTEST_8(testVectorType(Vector3f())); CALL_SUBTEST_8(testVectorType(Vector4f())); CALL_SUBTEST_8(testVectorType(Matrix())); CALL_SUBTEST_8(testVectorType(Matrix())); CALL_SUBTEST_9(testVectorType(VectorXi(internal::random(1, 10)))); CALL_SUBTEST_9(testVectorType(VectorXi(internal::random(9, 300)))); CALL_SUBTEST_9(testVectorType(Matrix())); } CALL_SUBTEST_6(bug79<0>()); CALL_SUBTEST_6(bug1630<0>()); CALL_SUBTEST_9(nullary_overflow<0>()); CALL_SUBTEST_10(nullary_internal_logic<0>()); }