// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2023 // Alejandro Acosta Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include <Eigen/Dense> template <bool verifyNan = false, bool singleTask = false, typename Operation, typename Input, typename Output> void run_and_verify(Operation& ope, size_t num_elements, const Input& in, Output& out) { Output out_gpu, out_cpu; out_gpu = out_cpu = out; auto queue = sycl::queue{sycl::default_selector_v}; auto in_size_bytes = sizeof(typename Input::Scalar) * in.size(); auto out_size_bytes = sizeof(typename Output::Scalar) * out.size(); auto in_d = sycl::malloc_device<typename Input::Scalar>(in.size(), queue); auto out_d = sycl::malloc_device<typename Output::Scalar>(out.size(), queue); queue.memcpy(in_d, in.data(), in_size_bytes).wait(); queue.memcpy(out_d, out.data(), out_size_bytes).wait(); if constexpr (singleTask) { queue.single_task([=]() { ope(in_d, out_d); }).wait(); } else { queue .parallel_for(sycl::range{num_elements}, [=](sycl::id<1> idx) { auto id = idx[0]; ope(id, in_d, out_d); }) .wait(); } queue.memcpy(out_gpu.data(), out_d, out_size_bytes).wait(); sycl::free(in_d, queue); sycl::free(out_d, queue); queue.throw_asynchronous(); // Run on CPU and compare the output if constexpr (singleTask == 1) { ope(in.data(), out_cpu.data()); } else { for (size_t i = 0; i < num_elements; ++i) { ope(i, in.data(), out_cpu.data()); } } if constexpr (verifyNan) { VERIFY_IS_CWISE_APPROX(out_gpu, out_cpu); } else { VERIFY_IS_APPROX(out_gpu, out_cpu); } } template <typename DataType, typename Input, typename Output> void test_coeff_wise(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { DataType x1(in + i); DataType x2(in + i + 1); DataType x3(in + i + 2); Map<DataType> res(out + i * DataType::MaxSizeAtCompileTime); res.array() += (in[0] * x1 + x2).array() * x3.array(); }; run_and_verify(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_complex_sqrt(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { using namespace Eigen; typedef typename DataType::Scalar ComplexType; typedef typename DataType::Scalar::value_type ValueType; const int num_special_inputs = 18; if (i == 0) { const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN(); typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs; SpecialInputs special_in; special_in.setZero(); int idx = 0; special_in[idx++] = ComplexType(0, 0); special_in[idx++] = ComplexType(-0, 0); special_in[idx++] = ComplexType(0, -0); special_in[idx++] = ComplexType(-0, -0); const ValueType inf = std::numeric_limits<ValueType>::infinity(); special_in[idx++] = ComplexType(1.0, inf); special_in[idx++] = ComplexType(nan, inf); special_in[idx++] = ComplexType(1.0, -inf); special_in[idx++] = ComplexType(nan, -inf); special_in[idx++] = ComplexType(-inf, 1.0); special_in[idx++] = ComplexType(inf, 1.0); special_in[idx++] = ComplexType(-inf, -1.0); special_in[idx++] = ComplexType(inf, -1.0); special_in[idx++] = ComplexType(-inf, nan); special_in[idx++] = ComplexType(inf, nan); special_in[idx++] = ComplexType(1.0, nan); special_in[idx++] = ComplexType(nan, 1.0); special_in[idx++] = ComplexType(nan, -1.0); special_in[idx++] = ComplexType(nan, nan); Map<SpecialInputs> special_out(out); special_out = special_in.cwiseSqrt(); } DataType x1(in + i); Map<DataType> res(out + num_special_inputs + i * DataType::MaxSizeAtCompileTime); res = x1.cwiseSqrt(); }; run_and_verify<true>(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_complex_operators(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { using namespace Eigen; typedef typename DataType::Scalar ComplexType; typedef typename DataType::Scalar::value_type ValueType; const int num_scalar_operators = 24; const int num_vector_operators = 23; // no unary + operator. size_t out_idx = i * (num_scalar_operators + num_vector_operators * DataType::MaxSizeAtCompileTime); // Scalar operators. const ComplexType a = in[i]; const ComplexType b = in[i + 1]; out[out_idx++] = +a; out[out_idx++] = -a; out[out_idx++] = a + b; out[out_idx++] = a + numext::real(b); out[out_idx++] = numext::real(a) + b; out[out_idx++] = a - b; out[out_idx++] = a - numext::real(b); out[out_idx++] = numext::real(a) - b; out[out_idx++] = a * b; out[out_idx++] = a * numext::real(b); out[out_idx++] = numext::real(a) * b; out[out_idx++] = a / b; out[out_idx++] = a / numext::real(b); out[out_idx++] = numext::real(a) / b; out[out_idx] = a; out[out_idx++] += b; out[out_idx] = a; out[out_idx++] -= b; out[out_idx] = a; out[out_idx++] *= b; out[out_idx] = a; out[out_idx++] /= b; const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); out[out_idx++] = (a == b ? true_value : false_value); out[out_idx++] = (a == numext::real(b) ? true_value : false_value); out[out_idx++] = (numext::real(a) == b ? true_value : false_value); out[out_idx++] = (a != b ? true_value : false_value); out[out_idx++] = (a != numext::real(b) ? true_value : false_value); out[out_idx++] = (numext::real(a) != b ? true_value : false_value); // Vector versions. DataType x1(in + i); DataType x2(in + i + 1); const int res_size = DataType::MaxSizeAtCompileTime * num_scalar_operators; const int size = DataType::MaxSizeAtCompileTime; int block_idx = 0; Map<VectorX<ComplexType>> res(out + out_idx, res_size); res.segment(block_idx, size) = -x1; block_idx += size; res.segment(block_idx, size) = x1 + x2; block_idx += size; res.segment(block_idx, size) = x1 + x2.real(); block_idx += size; res.segment(block_idx, size) = x1.real() + x2; block_idx += size; res.segment(block_idx, size) = x1 - x2; block_idx += size; res.segment(block_idx, size) = x1 - x2.real(); block_idx += size; res.segment(block_idx, size) = x1.real() - x2; block_idx += size; res.segment(block_idx, size) = x1.array() * x2.array(); block_idx += size; res.segment(block_idx, size) = x1.array() * x2.real().array(); block_idx += size; res.segment(block_idx, size) = x1.real().array() * x2.array(); block_idx += size; res.segment(block_idx, size) = x1.array() / x2.array(); block_idx += size; res.segment(block_idx, size) = x1.array() / x2.real().array(); block_idx += size; res.segment(block_idx, size) = x1.real().array() / x2.array(); block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2; block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2; block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array(); block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array(); block_idx += size; const DataType true_vector = DataType::Constant(true_value); const DataType false_vector = DataType::Constant(false_value); res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); block_idx += size; res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); block_idx += size; // res.segment(block_idx, size) = (x1.real() == x2) ? true_vector : false_vector; // block_idx += size; res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); block_idx += size; res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); block_idx += size; // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); // block_idx += size; }; run_and_verify<true>(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_redux(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { using namespace Eigen; int N = 10; DataType x1(in + i); out[i * N + 0] = x1.minCoeff(); out[i * N + 1] = x1.maxCoeff(); out[i * N + 2] = x1.sum(); out[i * N + 3] = x1.prod(); out[i * N + 4] = x1.matrix().squaredNorm(); out[i * N + 5] = x1.matrix().norm(); out[i * N + 6] = x1.colwise().sum().maxCoeff(); out[i * N + 7] = x1.rowwise().maxCoeff().sum(); out[i * N + 8] = x1.matrix().colwise().squaredNorm().sum(); }; run_and_verify(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_replicate(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { using namespace Eigen; DataType x1(in + i); int step = x1.size() * 4; int stride = 3 * step; typedef Map<Array<typename DataType::Scalar, Dynamic, Dynamic>> MapType; MapType(out + i * stride + 0 * step, x1.rows() * 2, x1.cols() * 2) = x1.replicate(2, 2); MapType(out + i * stride + 1 * step, x1.rows() * 3, x1.cols()) = in[i] * x1.colwise().replicate(3); MapType(out + i * stride + 2 * step, x1.rows(), x1.cols() * 3) = in[i] * x1.rowwise().replicate(3); }; run_and_verify(operation, num_elements, in, out); } template <typename DataType1, typename DataType2, typename Input, typename Output> void test_product(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) { using namespace Eigen; typedef Matrix<typename DataType1::Scalar, DataType1::RowsAtCompileTime, DataType2::ColsAtCompileTime> DataType3; DataType1 x1(in + i); DataType2 x2(in + i + 1); Map<DataType3> res(out + i * DataType3::MaxSizeAtCompileTime); res += in[i] * x1 * x2; }; run_and_verify(operation, num_elements, in, out); } template <typename DataType1, typename DataType2, typename Input, typename Output> void test_diagonal(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) { using namespace Eigen; DataType1 x1(in + i); Map<DataType2> res(out + i * DataType2::MaxSizeAtCompileTime); res += x1.diagonal(); }; run_and_verify(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_eigenvalues_direct(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { using namespace Eigen; typedef Matrix<typename DataType::Scalar, DataType::RowsAtCompileTime, 1> Vec; DataType M(in + i); Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime); DataType A = M * M.adjoint(); SelfAdjointEigenSolver<DataType> eig; eig.computeDirect(A); res = eig.eigenvalues(); }; run_and_verify(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_matrix_inverse(size_t num_elements, const Input& in, Output& out) { auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { using namespace Eigen; DataType M(in + i); Map<DataType> res(out + i * DataType::MaxSizeAtCompileTime); res = M.inverse(); }; run_and_verify(operation, num_elements, in, out); } template <typename DataType, typename Input, typename Output> void test_numeric_limits(const Input& in, Output& out) { auto operation = [](const typename DataType::Scalar* in, typename DataType::Scalar* out) { EIGEN_UNUSED_VARIABLE(in) out[0] = numext::numeric_limits<float>::epsilon(); out[1] = (numext::numeric_limits<float>::max)(); out[2] = (numext::numeric_limits<float>::min)(); out[3] = numext::numeric_limits<float>::infinity(); out[4] = numext::numeric_limits<float>::quiet_NaN(); }; run_and_verify<true, true>(operation, 1, in, out); } EIGEN_DECLARE_TEST(sycl_basic) { Eigen::VectorXf in, out; Eigen::VectorXcf cfin, cfout; constexpr size_t num_elements = 100; constexpr size_t data_size = num_elements * 512; in.setRandom(data_size); out.setConstant(data_size, -1); cfin.setRandom(data_size); cfout.setConstant(data_size, -1); CALL_SUBTEST(test_coeff_wise<Vector3f>(num_elements, in, out)); CALL_SUBTEST(test_coeff_wise<Array44f>(num_elements, in, out)); CALL_SUBTEST(test_complex_operators<Vector3cf>(num_elements, cfin, cfout)); CALL_SUBTEST(test_complex_sqrt<Vector3cf>(num_elements, cfin, cfout)); CALL_SUBTEST(test_redux<Array4f>(num_elements, in, out)); CALL_SUBTEST(test_redux<Matrix3f>(num_elements, in, out)); CALL_SUBTEST(test_replicate<Array4f>(num_elements, in, out)); CALL_SUBTEST(test_replicate<Array33f>(num_elements, in, out)); auto test_prod_mm = [&]() { test_product<Matrix3f, Matrix3f>(num_elements, in, out); }; auto test_prod_mv = [&]() { test_product<Matrix4f, Vector4f>(num_elements, in, out); }; CALL_SUBTEST(test_prod_mm()); CALL_SUBTEST(test_prod_mv()); auto test_diagonal_mv3f = [&]() { test_diagonal<Matrix3f, Vector3f>(num_elements, in, out); }; auto test_diagonal_mv4f = [&]() { test_diagonal<Matrix4f, Vector4f>(num_elements, in, out); }; CALL_SUBTEST(test_diagonal_mv3f()); CALL_SUBTEST(test_diagonal_mv4f()); CALL_SUBTEST(test_eigenvalues_direct<Matrix3f>(num_elements, in, out)); CALL_SUBTEST(test_eigenvalues_direct<Matrix2f>(num_elements, in, out)); CALL_SUBTEST(test_matrix_inverse<Matrix2f>(num_elements, in, out)); CALL_SUBTEST(test_matrix_inverse<Matrix3f>(num_elements, in, out)); CALL_SUBTEST(test_matrix_inverse<Matrix4f>(num_elements, in, out)); CALL_SUBTEST(test_numeric_limits<Vector3f>(in, out)); }