// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Benoit Jacob // Copyright (C) 2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define TEST_ENABLE_TEMPORARY_TRACKING #include "main.h" template void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows - 1), c = internal::random(0, cols - 1); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); // test subtraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); // test multiplication m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); // test quotient m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); m2 = m1; // yes, there might be an aliasing issue there but ".rowwise() /=" // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid // evaluating the reduction multiple times if (ArrayType::RowsAtCompileTime > 2 || ArrayType::RowsAtCompileTime == Dynamic) { m2.rowwise() /= m2.colwise().sum(); VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); } // all/any Array mb(rows, cols); mb = (m1.real() <= 0.7).colwise().all(); VERIFY((mb.col(c) == (m1.real().col(c) <= 0.7).all()).all()); mb = (m1.real() <= 0.7).rowwise().all(); VERIFY((mb.row(r) == (m1.real().row(r) <= 0.7).all()).all()); mb = (m1.real() >= 0.7).colwise().any(); VERIFY((mb.col(c) == (m1.real().col(c) >= 0.7).any()).all()); mb = (m1.real() >= 0.7).rowwise().any(); VERIFY((mb.row(r) == (m1.real().row(r) >= 0.7).any()).all()); } template void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix ColVectorType; typedef Matrix RowVectorType; typedef Matrix RealColVectorType; typedef Matrix RealRowVectorType; typedef Matrix MatrixX; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows - 1), c = internal::random(0, cols - 1); MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); RealColVectorType rcres; RealRowVectorType rrres; // test broadcast assignment m2 = m1; m2.colwise() = colvec; for (Index j = 0; j < cols; ++j) VERIFY_IS_APPROX(m2.col(j), colvec); m2.rowwise() = rowvec; for (Index i = 0; i < rows; ++i) VERIFY_IS_APPROX(m2.row(i), rowvec); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); // test subtraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); // ------ partial reductions ------ #define TEST_PARTIAL_REDUX_BASIC(FUNC, ROW, COL, PREPROCESS) \ { \ ROW = m1 PREPROCESS.colwise().FUNC; \ for (Index k = 0; k < cols; ++k) VERIFY_IS_APPROX(ROW(k), m1.col(k) PREPROCESS.FUNC); \ COL = m1 PREPROCESS.rowwise().FUNC; \ for (Index k = 0; k < rows; ++k) VERIFY_IS_APPROX(COL(k), m1.row(k) PREPROCESS.FUNC); \ } TEST_PARTIAL_REDUX_BASIC(sum(), rowvec, colvec, EIGEN_EMPTY); TEST_PARTIAL_REDUX_BASIC(prod(), rowvec, colvec, EIGEN_EMPTY); TEST_PARTIAL_REDUX_BASIC(mean(), rowvec, colvec, EIGEN_EMPTY); TEST_PARTIAL_REDUX_BASIC(minCoeff(), rrres, rcres, .real()); TEST_PARTIAL_REDUX_BASIC(maxCoeff(), rrres, rcres, .real()); TEST_PARTIAL_REDUX_BASIC(norm(), rrres, rcres, EIGEN_EMPTY); TEST_PARTIAL_REDUX_BASIC(squaredNorm(), rrres, rcres, EIGEN_EMPTY); TEST_PARTIAL_REDUX_BASIC(redux(internal::scalar_sum_op()), rowvec, colvec, EIGEN_EMPTY); VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm()); VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm()); // regression for bug 1158 VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum()); // test normalized m2 = m1.colwise().normalized(); VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); m2 = m1.rowwise().normalized(); VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); // test normalize m2 = m1; m2.colwise().normalize(); VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); m2 = m1; m2.rowwise().normalize(); VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); // test with partial reduction of products Matrix m1m1 = m1 * m1.transpose(); VERIFY_IS_APPROX((m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); Matrix tmp(rows); VERIFY_EVALUATION_COUNT(tmp = (m1 * m1.transpose()).colwise().sum(), 1); m2 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())).eval(); m1 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())); VERIFY_IS_APPROX(m1, m2); VERIFY_EVALUATION_COUNT(m2 = (m1.rowwise() - m1.colwise().sum() / RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime != 1 ? 1 : 0)); // test empty expressions VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().sum().eval(), MatrixX::Zero(rows, 1)); VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().sum().eval(), MatrixX::Zero(1, cols)); VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows, 1)); VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().sum().eval(), MatrixX::Zero(1, cols)); VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().prod().eval(), MatrixX::Ones(rows, 1)); VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().prod().eval(), MatrixX::Ones(1, cols)); VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows, 1)); VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().prod().eval(), MatrixX::Ones(1, cols)); VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows, 1)); VERIFY_IS_EQUAL(m1.real().middleRows(0, 0).rowwise().maxCoeff().eval().rows(), 0); VERIFY_IS_EQUAL(m1.real().middleCols(0, 0).colwise().maxCoeff().eval().cols(), 0); VERIFY_IS_EQUAL(m1.real().middleRows(0, fix<0>).rowwise().maxCoeff().eval().rows(), 0); VERIFY_IS_EQUAL(m1.real().middleCols(0, fix<0>).colwise().maxCoeff().eval().cols(), 0); } EIGEN_DECLARE_TEST(vectorwiseop) { CALL_SUBTEST_1(vectorwiseop_array(Array22cd())); CALL_SUBTEST_2(vectorwiseop_array(Array())); CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4))); CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf())); CALL_SUBTEST_5(vectorwiseop_matrix(Matrix4f())); CALL_SUBTEST_5(vectorwiseop_matrix(Vector4f())); CALL_SUBTEST_5(vectorwiseop_matrix(Matrix())); CALL_SUBTEST_6(vectorwiseop_matrix( MatrixXd(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7(vectorwiseop_matrix(VectorXd(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7(vectorwiseop_matrix(RowVectorXd(internal::random(1, EIGEN_TEST_MAX_SIZE)))); }