// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include using Eigen::Tensor; using Eigen::RowMajor; static void test_1d() { Tensor vec1({6}); Tensor vec2({6}); vec1(0) = 4.0; vec2(0) = 0.0; vec1(1) = 8.0; vec2(1) = 1.0; vec1(2) = 15.0; vec2(2) = 2.0; vec1(3) = 16.0; vec2(3) = 3.0; vec1(4) = 23.0; vec2(4) = 4.0; vec1(5) = 42.0; vec2(5) = 5.0; float data3[6]; TensorMap> vec3(data3, 6); vec3 = vec1.cwiseSqrt(); float data4[6]; TensorMap> vec4(data4, 6); vec4 = vec2.cwiseSqrt(); VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); VERIFY_IS_APPROX(vec4(0), sqrtf(0.0)); VERIFY_IS_APPROX(vec4(1), sqrtf(1.0)); VERIFY_IS_APPROX(vec4(2), sqrtf(2.0)); VERIFY_IS_APPROX(vec4(3), sqrtf(3.0)); VERIFY_IS_APPROX(vec4(4), sqrtf(4.0)); VERIFY_IS_APPROX(vec4(5), sqrtf(5.0)); vec3 = vec1 + vec2; VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); } static void test_2d() { float data1[6]; TensorMap> mat1(data1, 2, 3); float data2[6]; TensorMap> mat2(data2, 2, 3); mat1(0,0) = 0.0; mat1(0,1) = 1.0; mat1(0,2) = 2.0; mat1(1,0) = 3.0; mat1(1,1) = 4.0; mat1(1,2) = 5.0; mat2(0,0) = -0.0; mat2(0,1) = -1.0; mat2(0,2) = -2.0; mat2(1,0) = -3.0; mat2(1,1) = -4.0; mat2(1,2) = -5.0; Tensor mat3(2,3); Tensor mat4(2,3); mat3 = mat1.cwiseAbs(); mat4 = mat2.cwiseAbs(); VERIFY_IS_APPROX(mat3(0,0), 0.0f); VERIFY_IS_APPROX(mat3(0,1), 1.0f); VERIFY_IS_APPROX(mat3(0,2), 2.0f); VERIFY_IS_APPROX(mat3(1,0), 3.0f); VERIFY_IS_APPROX(mat3(1,1), 4.0f); VERIFY_IS_APPROX(mat3(1,2), 5.0f); VERIFY_IS_APPROX(mat4(0,0), 0.0f); VERIFY_IS_APPROX(mat4(0,1), 1.0f); VERIFY_IS_APPROX(mat4(0,2), 2.0f); VERIFY_IS_APPROX(mat4(1,0), 3.0f); VERIFY_IS_APPROX(mat4(1,1), 4.0f); VERIFY_IS_APPROX(mat4(1,2), 5.0f); } static void test_3d() { Tensor mat1(2,3,7); Tensor mat2(2,3,7); float val = 0.0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val += 1.0; } } } Tensor mat3(2,3,7); mat3 = mat1 + mat1; Tensor mat4(2,3,7); mat4 = mat2 * 3.14f; Tensor mat5(2,3,7); mat5 = mat1.cwiseSqrt().cwiseSqrt(); Tensor mat6(2,3,7); mat6 = mat2.cwiseSqrt() * 3.14f; val = 0.0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_APPROX(mat3(i,j,k), val + val); VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f); VERIFY_IS_APPROX(mat5(i,j,k), sqrtf(sqrtf(val))); VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f); val += 1.0; } } } } void test_cxx11_tensor_expr() { CALL_SUBTEST(test_1d()); CALL_SUBTEST(test_2d()); CALL_SUBTEST(test_3d()); }