// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_VISITOR_H #define EIGEN_VISITOR_H #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { template::PacketAccess)> struct visitor_impl; template struct visitor_impl { enum { col = (UnrollCount-1) / Derived::RowsAtCompileTime, row = (UnrollCount-1) % Derived::RowsAtCompileTime }; EIGEN_DEVICE_FUNC static inline void run(const Derived &mat, Visitor& visitor) { visitor_impl::run(mat, visitor); visitor(mat.coeff(row, col), row, col); } }; template struct visitor_impl { EIGEN_DEVICE_FUNC static inline void run(const Derived &mat, Visitor& visitor) { return visitor.init(mat.coeff(0, 0), 0, 0); } }; // This specialization enables visitors on empty matrices at compile-time template struct visitor_impl { EIGEN_DEVICE_FUNC static inline void run(const Derived &/*mat*/, Visitor& /*visitor*/) {} }; template struct visitor_impl { EIGEN_DEVICE_FUNC static inline void run(const Derived& mat, Visitor& visitor) { visitor.init(mat.coeff(0,0), 0, 0); for(Index i = 1; i < mat.rows(); ++i) visitor(mat.coeff(i, 0), i, 0); for(Index j = 1; j < mat.cols(); ++j) for(Index i = 0; i < mat.rows(); ++i) visitor(mat.coeff(i, j), i, j); } }; template struct visitor_impl { typedef typename Derived::Scalar Scalar; typedef typename packet_traits::type Packet; EIGEN_DEVICE_FUNC static inline void run(const Derived& mat, Visitor& visitor) { const Index PacketSize = packet_traits::size; visitor.init(mat.coeff(0,0), 0, 0); if (Derived::IsRowMajor) { for(Index i = 0; i < mat.rows(); ++i) { Index j = i == 0 ? 1 : 0; for(; j+PacketSize-1 < mat.cols(); j += PacketSize) { Packet p = mat.packet(i, j); visitor.packet(p, i, j); } for(; j < mat.cols(); ++j) visitor(mat.coeff(i, j), i, j); } } else { for(Index j = 0; j < mat.cols(); ++j) { Index i = j == 0 ? 1 : 0; for(; i+PacketSize-1 < mat.rows(); i += PacketSize) { Packet p = mat.packet(i, j); visitor.packet(p, i, j); } for(; i < mat.rows(); ++i) visitor(mat.coeff(i, j), i, j); } } } }; // evaluator adaptor template class visitor_evaluator { public: typedef internal::evaluator Evaluator; enum { PacketAccess = Evaluator::Flags & PacketAccessBit, IsRowMajor = XprType::IsRowMajor, RowsAtCompileTime = XprType::RowsAtCompileTime, CoeffReadCost = Evaluator::CoeffReadCost }; EIGEN_DEVICE_FUNC explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) { } typedef typename XprType::Scalar Scalar; typedef typename internal::remove_const::type CoeffReturnType; typedef typename internal::remove_const::type PacketReturnType; EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_xpr.rows(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_xpr.cols(); } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_xpr.size(); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const { return m_evaluator.coeff(row, col); } EIGEN_DEVICE_FUNC PacketReturnType packet(Index row, Index col) const { return m_evaluator.template packet(row, col); } protected: Evaluator m_evaluator; const XprType &m_xpr; }; } // end namespace internal /** Applies the visitor \a visitor to the whole coefficients of the matrix or vector. * * The template parameter \a Visitor is the type of the visitor and provides the following interface: * \code * struct MyVisitor { * // called for the first coefficient * void init(const Scalar& value, Index i, Index j); * // called for all other coefficients * void operator() (const Scalar& value, Index i, Index j); * }; * \endcode * * \note compared to one or two \em for \em loops, visitors offer automatic * unrolling for small fixed size matrix. * * \note if the matrix is empty, then the visitor is left unchanged. * * \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux() */ template template EIGEN_DEVICE_FUNC void DenseBase::visit(Visitor& visitor) const { if(size()==0) return; typedef typename internal::visitor_evaluator ThisEvaluator; ThisEvaluator thisEval(derived()); enum { unroll = SizeAtCompileTime != Dynamic && SizeAtCompileTime * int(ThisEvaluator::CoeffReadCost) + (SizeAtCompileTime-1) * int(internal::functor_traits::Cost) <= EIGEN_UNROLLING_LIMIT }; return internal::visitor_impl::run(thisEval, visitor); } namespace internal { /** \internal * \brief Base class to implement min and max visitors */ template struct coeff_visitor { // default initialization to avoid countless invalid maybe-uninitialized warnings by gcc EIGEN_DEVICE_FUNC coeff_visitor() : row(-1), col(-1), res(0) {} typedef typename Derived::Scalar Scalar; Index row, col; Scalar res; EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index i, Index j) { res = value; row = i; col = j; } }; template struct minmax_compare { typedef typename packet_traits::type Packet; static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a < b; } static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_min(p);} }; template struct minmax_compare { typedef typename packet_traits::type Packet; static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a > b; } static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_max(p);} }; template struct minmax_coeff_visitor : coeff_visitor { using Scalar = typename Derived::Scalar; using Packet = typename packet_traits::type; using Comparator = minmax_compare; EIGEN_DEVICE_FUNC inline void operator() (const Scalar& value, Index i, Index j) { if(Comparator::compare(value, this->res)) { this->res = value; this->row = i; this->col = j; } } EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) { const Index PacketSize = packet_traits::size; Scalar value = Comparator::predux(p); if (Comparator::compare(value, this->res)) { const Packet range = preverse(plset(Scalar(1))); Packet mask = pcmp_eq(pset1(value), p); Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); this->res = value; this->row = Derived::IsRowMajor ? i : i + max_idx;; this->col = Derived::IsRowMajor ? j + max_idx : j; } } }; // Suppress NaN. The only case in which we return NaN is if the matrix is all NaN, in which case, // the row=0, col=0 is returned for the location. template struct minmax_coeff_visitor : coeff_visitor { typedef typename Derived::Scalar Scalar; using Packet = typename packet_traits::type; using Comparator = minmax_compare; EIGEN_DEVICE_FUNC inline void operator() (const Scalar& value, Index i, Index j) { if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { this->res = value; this->row = i; this->col = j; } } EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) { const Index PacketSize = packet_traits::size; Scalar value = Comparator::predux(p); if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { const Packet range = preverse(plset(Scalar(1))); /* mask will be zero for NaNs, so they will be ignored. */ Packet mask = pcmp_eq(pset1(value), p); Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); this->res = value; this->row = Derived::IsRowMajor ? i : i + max_idx;; this->col = Derived::IsRowMajor ? j + max_idx : j; } } }; // Propagate NaN. If the matrix contains NaN, the location of the first NaN will be returned in // row and col. template struct minmax_coeff_visitor : coeff_visitor { typedef typename Derived::Scalar Scalar; using Packet = typename packet_traits::type; using Comparator = minmax_compare; EIGEN_DEVICE_FUNC inline void operator() (const Scalar& value, Index i, Index j) { const bool value_is_nan = (numext::isnan)(value); if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { this->res = value; this->row = i; this->col = j; } } EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) { const Index PacketSize = packet_traits::size; Scalar value = Comparator::predux(p); const bool value_is_nan = (numext::isnan)(value); if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) { const Packet range = preverse(plset(Scalar(1))); // If the value is NaN, pick the first position of a NaN, otherwise pick the first extremal value. Packet mask = value_is_nan ? pnot(pcmp_eq(p, p)) : pcmp_eq(pset1(value), p); Index max_idx = PacketSize - static_cast(predux_max(pand(range, mask))); this->res = value; this->row = Derived::IsRowMajor ? i : i + max_idx;; this->col = Derived::IsRowMajor ? j + max_idx : j; } } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = true }; }; } // end namespace internal /** \fn DenseBase::minCoeff(IndexType* rowId, IndexType* colId) const * \returns the minimum of all coefficients of *this and puts in *row and *col its location. * * In case \c *this contains NaN, NaNPropagation determines the behavior: * NaNPropagation == PropagateFast : undefined * NaNPropagation == PropagateNaN : result is NaN * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN * \warning the matrix must be not empty, otherwise an assertion is triggered. * * \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visit(), DenseBase::minCoeff() */ template template EIGEN_DEVICE_FUNC typename internal::traits::Scalar DenseBase::minCoeff(IndexType* rowId, IndexType* colId) const { eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); internal::minmax_coeff_visitor minVisitor; this->visit(minVisitor); *rowId = minVisitor.row; if (colId) *colId = minVisitor.col; return minVisitor.res; } /** \returns the minimum of all coefficients of *this and puts in *index its location. * * In case \c *this contains NaN, NaNPropagation determines the behavior: * NaNPropagation == PropagateFast : undefined * NaNPropagation == PropagateNaN : result is NaN * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN * \warning the matrix must be not empty, otherwise an assertion is triggered. * * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::minCoeff() */ template template EIGEN_DEVICE_FUNC typename internal::traits::Scalar DenseBase::minCoeff(IndexType* index) const { eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) internal::minmax_coeff_visitor minVisitor; this->visit(minVisitor); *index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row); return minVisitor.res; } /** \fn DenseBase::maxCoeff(IndexType* rowId, IndexType* colId) const * \returns the maximum of all coefficients of *this and puts in *row and *col its location. * * In case \c *this contains NaN, NaNPropagation determines the behavior: * NaNPropagation == PropagateFast : undefined * NaNPropagation == PropagateNaN : result is NaN * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN * \warning the matrix must be not empty, otherwise an assertion is triggered. * * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::maxCoeff() */ template template EIGEN_DEVICE_FUNC typename internal::traits::Scalar DenseBase::maxCoeff(IndexType* rowPtr, IndexType* colPtr) const { eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); internal::minmax_coeff_visitor maxVisitor; this->visit(maxVisitor); *rowPtr = maxVisitor.row; if (colPtr) *colPtr = maxVisitor.col; return maxVisitor.res; } /** \returns the maximum of all coefficients of *this and puts in *index its location. * * In case \c *this contains NaN, NaNPropagation determines the behavior: * NaNPropagation == PropagateFast : undefined * NaNPropagation == PropagateNaN : result is NaN * NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN * \warning the matrix must be not empty, otherwise an assertion is triggered. * * \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff() */ template template EIGEN_DEVICE_FUNC typename internal::traits::Scalar DenseBase::maxCoeff(IndexType* index) const { eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) internal::minmax_coeff_visitor maxVisitor; this->visit(maxVisitor); *index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row; return maxVisitor.res; } } // end namespace Eigen #endif // EIGEN_VISITOR_H