// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_QUATERNION_H #define EIGEN_QUATERNION_H template struct ei_quaternion_assign_impl; /** \class Quaternion * * \brief The quaternion class used to represent 3D orientations and rotations * * \param _Scalar the scalar type, i.e., the type of the coefficients * * This class represents a quaternion that is a convenient representation of * orientations and rotations of objects in three dimensions. Compared to other * representations like Euler angles or 3x3 matrices, quatertions offer the * following advantages: * \li \c compact storage (4 scalars) * \li \c efficient to compose (28 flops), * \li \c stable spherical interpolation * * The following two typedefs are provided for convenience: * \li \c Quaternionf for \c float * \li \c Quaterniond for \c double * * \sa class AngleAxis, class EulerAngles, class Transform */ template class Quaternion { typedef Matrix<_Scalar, 4, 1> Coefficients; Coefficients m_coeffs; public: /** the scalar type of the coefficients */ typedef _Scalar Scalar; typedef Matrix Vector3; typedef Matrix Matrix3; typedef AngleAxis AngleAxisType; inline Scalar x() const { return m_coeffs.coeff(0); } inline Scalar y() const { return m_coeffs.coeff(1); } inline Scalar z() const { return m_coeffs.coeff(2); } inline Scalar w() const { return m_coeffs.coeff(3); } inline Scalar& x() { return m_coeffs.coeffRef(0); } inline Scalar& y() { return m_coeffs.coeffRef(1); } inline Scalar& z() { return m_coeffs.coeffRef(2); } inline Scalar& w() { return m_coeffs.coeffRef(3); } /** \returns a read-only vector expression of the imaginary part (x,y,z) */ inline const Block vec() const { return m_coeffs.template start<3>(); } /** \returns a vector expression of the imaginary part (x,y,z) */ inline Block vec() { return m_coeffs.template start<3>(); } /** \returns a read-only vector expression of the coefficients */ inline const Coefficients& coeffs() const { return m_coeffs; } /** \returns a vector expression of the coefficients */ inline Coefficients& coeffs() { return m_coeffs; } // FIXME what is the prefered order: w x,y,z or x,y,z,w ? inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0) { m_coeffs.coeffRef(0) = x; m_coeffs.coeffRef(1) = y; m_coeffs.coeffRef(2) = z; m_coeffs.coeffRef(3) = w; } /** Copy constructor */ inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } template explicit inline Quaternion(const MatrixBase& other) { *this = other; } Quaternion& operator=(const Quaternion& other); Quaternion& operator=(const AngleAxisType& aa); template Quaternion& operator=(const MatrixBase& m); operator Matrix3 () const { return toRotationMatrix(); } /** \returns a quaternion representing an identity rotation * \sa MatrixBase::identity() */ inline static Quaternion identity() { return Quaternion(1, 0, 0, 0); } /** \sa Quaternion::identity(), MatrixBase::setIdentity() */ inline Quaternion& setIdentity() { m_coeffs << 1, 0, 0, 0; return *this; } /** \returns the squared norm of the quaternion's coefficients * \sa Quaternion::norm(), MatrixBase::norm2() */ inline Scalar norm2() const { return m_coeffs.norm2(); } /** \returns the norm of the quaternion's coefficients * \sa Quaternion::norm2(), MatrixBase::norm() */ inline Scalar norm() const { return m_coeffs.norm(); } Matrix3 toRotationMatrix(void) const; template Quaternion& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); inline Quaternion operator* (const Quaternion& q) const; inline Quaternion& operator*= (const Quaternion& q); Quaternion inverse(void) const; Quaternion conjugate(void) const; Quaternion slerp(Scalar t, const Quaternion& other) const; template Vector3 operator* (const MatrixBase& vec) const; }; typedef Quaternion Quaternionf; typedef Quaternion Quaterniond; /** \returns the concatenation of two rotations as a quaternion-quaternion product */ template inline Quaternion Quaternion::operator* (const Quaternion& other) const { return Quaternion ( this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * other.z(), this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * other.y(), this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * other.z(), this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * other.x() ); } template inline Quaternion& Quaternion::operator*= (const Quaternion& other) { return (*this = *this * other); } /** Rotation of a vector by a quaternion. * \remarks If the quaternion is used to rotate several points (>1) * then it is much more efficient to first convert it to a 3x3 Matrix. * Comparison of the operation cost for n transformations: * - Quaternion: 30n * - Via a Matrix3: 24 + 15n */ template template inline typename Quaternion::Vector3 Quaternion::operator* (const MatrixBase& v) const { // Note that this algorithm comes from the optimization by hand // of the conversion to a Matrix followed by a Matrix/Vector product. // It appears to be much faster than the common algorithm found // in the litterature (30 versus 39 flops). It also requires two // Vector3 as temporaries. Vector3 uv; uv = 2 * this->vec().cross(v); return v + this->w() * uv + this->vec().cross(uv); } template inline Quaternion& Quaternion::operator=(const Quaternion& other) { m_coeffs = other.m_coeffs; return *this; } /** Set \c *this from an angle-axis \a aa * and returns a reference to \c *this */ template inline Quaternion& Quaternion::operator=(const AngleAxisType& aa) { Scalar ha = 0.5*aa.angle(); this->w() = ei_cos(ha); this->vec() = ei_sin(ha) * aa.axis(); return *this; } /** Set \c *this from the expression \a xpr: * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix * and \a xpr is converted to a quaternion */ template template inline Quaternion& Quaternion::operator=(const MatrixBase& xpr) { ei_quaternion_assign_impl::run(*this, xpr.derived()); return *this; } /** Convert the quaternion to a 3x3 rotation matrix */ template inline typename Quaternion::Matrix3 Quaternion::toRotationMatrix(void) const { // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) // if not inlined then the cost of the return by value is huge ~ +35%, // however, not inlining this function is an order of magnitude slower, so // it has to be inlined, and so the return by value is not an issue Matrix3 res; Scalar tx = 2*this->x(); Scalar ty = 2*this->y(); Scalar tz = 2*this->z(); Scalar twx = tx*this->w(); Scalar twy = ty*this->w(); Scalar twz = tz*this->w(); Scalar txx = tx*this->x(); Scalar txy = ty*this->x(); Scalar txz = tz*this->x(); Scalar tyy = ty*this->y(); Scalar tyz = tz*this->y(); Scalar tzz = tz*this->z(); res.coeffRef(0,0) = 1-(tyy+tzz); res.coeffRef(0,1) = txy-twz; res.coeffRef(0,2) = txz+twy; res.coeffRef(1,0) = txy+twz; res.coeffRef(1,1) = 1-(txx+tzz); res.coeffRef(1,2) = tyz-twx; res.coeffRef(2,0) = txz-twy; res.coeffRef(2,1) = tyz+twx; res.coeffRef(2,2) = 1-(txx+tyy); return res; } /** Makes a quaternion representing the rotation between two vectors \a a and \a b. * \returns a reference to the actual quaternion * Note that the two input vectors have \b not to be normalized. */ template template inline Quaternion& Quaternion::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) { Vector3 v0 = a.normalized(); Vector3 v1 = b.normalized(); Vector3 axis = v0.cross(v1); Scalar c = v0.dot(v1); // if dot == 1, vectors are the same if (ei_isApprox(c,Scalar(1))) { // set to identity this->w() = 1; this->vec().setZero(); } Scalar s = ei_sqrt((1+c)*2); Scalar invs = 1./s; this->vec() = axis * invs; this->w() = s * 0.5; return *this; } /** \returns the multiplicative inverse of \c *this * Note that in most cases, i.e., if you simply want the opposite * rotation, it is enough to use the conjugate. * * \sa Quaternion::conjugate() */ template inline Quaternion Quaternion::inverse() const { // FIXME should this funtion be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? Scalar n2 = this->norm2(); if (n2 > 0) return Quaternion(conjugate().coeffs() / n2); else { // return an invalid result to flag the error return Quaternion(Coefficients::zero()); } } /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse * if the quaternion is normalized. * The conjugate of a quaternion represents the opposite rotation. * * \sa Quaternion::inverse() */ template inline Quaternion Quaternion::conjugate() const { return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); } /** \returns the spherical linear interpolation between the two quaternions * \c *this and \a other at the parameter \a t */ template Quaternion Quaternion::slerp(Scalar t, const Quaternion& other) const { // FIXME options for this function would be: // 1 - Quaternion& fromSlerp(Scalar t, const Quaternion& q0, const Quaternion& q1); // which set *this from the s-lerp and returns *this // 2 - Quaternion slerp(Scalar t, const Quaternion& other) const // which returns the s-lerp between this and other // ?? if (*this == other) return *this; Scalar d = this->dot(other); // theta is the angle between the 2 quaternions Scalar theta = std::acos(ei_abs(d)); Scalar sinTheta = ei_sin(theta); Scalar scale0 = ei_sin( ( 1 - t ) * theta) / sinTheta; Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta; if (d<0) scale1 = -scale1; return scale0 * (*this) + scale1 * other; } // set from a rotation matrix template struct ei_quaternion_assign_impl { typedef typename Other::Scalar Scalar; inline static void run(Quaternion& q, const Other& mat) { // This algorithm comes from "Quaternion Calculus and Fast Animation", // Ken Shoemake, 1987 SIGGRAPH course notes Scalar t = mat.trace(); if (t > 0) { t = ei_sqrt(t + 1.0); q.w() = 0.5*t; t = 0.5/t; q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; } else { int i = 0; if (mat.coeff(1,1) > mat.coeff(0,0)) i = 1; if (mat.coeff(2,2) > mat.coeff(i,i)) i = 2; int j = (i+1)%3; int k = (j+1)%3; t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + 1.0); q.coeffs().coeffRef(i) = 0.5 * t; t = 0.5/t; q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; } } }; // set from a vector of coefficients assumed to be a quaternion template struct ei_quaternion_assign_impl { typedef typename Other::Scalar Scalar; inline static void run(Quaternion& q, const Other& vec) { q.coeffs() = vec; } }; #endif // EIGEN_QUATERNION_H