// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "matrix_functions.h" template void test2dRotation(double tol) { Matrix A, B, C; T angle, c, s; A << 0, 1, -1, 0; for (int i = 0; i <= 20; i++) { angle = pow(10, (i-10) / 5.); c = std::cos(angle); s = std::sin(angle); B << c, s, -s, c; C = A.pow(std::ldexp(angle, 1) / M_PI); std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C, B) << '\n'; VERIFY(C.isApprox(B, T(tol))); } } template void test2dHyperbolicRotation(double tol) { Matrix,2,2> A, B, C; T angle, ch = std::cosh(1); std::complex ish(0, std::sinh(1)); A << ch, ish, -ish, ch; for (int i = 0; i <= 20; i++) { angle = std::ldexp(T(i-10), -1); ch = std::cosh(angle); ish = std::complex(0, std::sinh(angle)); B << ch, ish, -ish, ch; C = A.pow(angle); std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C, B) << '\n'; VERIFY(C.isApprox(B, T(tol))); } } template void testIntPowers(const MatrixType& m, double tol) { typedef typename MatrixType::RealScalar RealScalar; const MatrixType m1 = MatrixType::Random(m.rows(), m.cols()); const MatrixType identity = MatrixType::Identity(m.rows(), m.cols()); const PartialPivLU solver(m1); MatrixType m2, m3, m4; m3 = m1.pow(0); m4 = m1.pow(0.); std::cout << "testIntPower: i = 0 error powerm = " << relerr(identity, m3) << " " << relerr(identity, m4) << '\n'; VERIFY(identity == m3 && identity == m4); m3 = m1.pow(1); m4 = m1.pow(1.); std::cout << "testIntPower: i = 1 error powerm = " << relerr(m1, m3) << " " << relerr(m1, m4) << '\n'; VERIFY(m1 == m3 && m1 == m4); m2 = m1 * m1; m3 = m1.pow(2); m4 = m1.pow(2.); std::cout << "testIntPower: i = 2 error powerm = " << relerr(m2, m3) << " " << relerr(m2, m4) << '\n'; VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol))); for (int i = 3; i <= 20; i++) { m2 *= m1; m3 = m1.pow(i); m4 = m1.pow(RealScalar(i)); std::cout << "testIntPower: i = " << i << " error powerm = " << relerr(m2, m3) << " " << relerr (m2, m4) << '\n'; VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol))); } m2 = solver.inverse(); m3 = m1.pow(-1); m4 = m1.pow(-1.); std::cout << "testIntPower: i = -1 error powerm = " << relerr(m2, m3) << " " << relerr (m2, m4) << '\n'; VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol))); for (int i = -2; i >= -20; i--) { m2 = solver.solve(m2); m3 = m1.pow(i); m4 = m1.pow(RealScalar(i)); std::cout << "testIntPower: i = " << i << " error powerm = " << relerr(m2, m3) << " " << relerr (m2, m4) << '\n'; VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol))); } } template void testExponentLaws(const MatrixType& m, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1, m2, m3, m4, m5; RealScalar x, y; for (int i = 0; i < g_repeat; i++) { generateTestMatrix::run(m1, m.rows()); x = internal::random(); y = internal::random(); m2 = m1.pow(x); m3 = m1.pow(y); m4 = m1.pow(x + y); m5 = m2 * m3; std::cout << "testExponentLaws: error powerm = " << relerr(m4, m5); VERIFY(m4.isApprox(m5, RealScalar(tol))); if (!NumTraits::IsComplex) { m4 = m1.pow(x * y); m5 = m2.pow(y); std::cout << " " << relerr(m4, m5); VERIFY(m4.isApprox(m5, RealScalar(tol))); } m4 = (std::abs(x) * m1).pow(y); m5 = std::pow(std::abs(x), y) * m3; std::cout << " " << relerr(m4, m5) << '\n'; VERIFY(m4.isApprox(m5, RealScalar(tol))); } } template void testMatrixVectorProduct(const MatrixType& m, const VectorType& v, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1; VectorType v1, v2, v3; RealScalar pReal; signed char pInt; for (int i = 0; i < g_repeat; i++) { generateTestMatrix::run(m1, m.rows()); v1 = VectorType::Random(v.rows(), v.cols()); pReal = internal::random(); pInt = rand(); pInt >>= 2; v2 = m1.pow(pReal).eval() * v1; v3 = m1.pow(pReal) * v1; std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3); VERIFY(v2.isApprox(v3, RealScalar(tol))); v2 = m1.pow(pInt).eval() * v1; v3 = m1.pow(pInt) * v1; std::cout << " " << relerr(v2, v3) << '\n'; VERIFY(v2.isApprox(v3, RealScalar(tol)) || v2 == v3); } } void test_matrix_power() { CALL_SUBTEST_2(test2dRotation(1e-13)); CALL_SUBTEST_1(test2dRotation(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64 CALL_SUBTEST_9(test2dRotation(1e-13)); CALL_SUBTEST_2(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_1(test2dHyperbolicRotation(1e-5)); CALL_SUBTEST_9(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_2(testIntPowers(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testIntPowers(Matrix(), 1e-13)); CALL_SUBTEST_3(testIntPowers(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testIntPowers(MatrixXd(8,8), 1e-13)); CALL_SUBTEST_1(testIntPowers(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testIntPowers(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testIntPowers(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testIntPowers(MatrixXf(8,8), 1e-4)); CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testExponentLaws(Matrix(), 1e-13)); CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 1e-13)); CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testExponentLaws(MatrixXf(8,8), 1e-4)); CALL_SUBTEST_2(testMatrixVectorProduct(Matrix2d(), Vector2d(), 1e-13)); CALL_SUBTEST_7(testMatrixVectorProduct(Matrix(), Vector3d(), 1e-13)); CALL_SUBTEST_3(testMatrixVectorProduct(Matrix4cd(), Vector4cd(), 1e-13)); CALL_SUBTEST_4(testMatrixVectorProduct(MatrixXd(8,8), MatrixXd(8,2), 1e-13)); CALL_SUBTEST_1(testMatrixVectorProduct(Matrix2f(), Vector2f(), 1e-4)); CALL_SUBTEST_5(testMatrixVectorProduct(Matrix3cf(), Vector3cf(), 1e-4)); CALL_SUBTEST_8(testMatrixVectorProduct(Matrix4f(), Vector4f(), 1e-4)); CALL_SUBTEST_6(testMatrixVectorProduct(MatrixXf(8,8), VectorXf(8), 1e-4)); CALL_SUBTEST_10(testMatrixVectorProduct(Matrix(7,7), Matrix(), 1e-13)); }