// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifdef EIGEN_TEST_PART_1 #define EIGEN_UNALIGNED_VECTORIZE 1 #endif #ifdef EIGEN_TEST_PART_2 #define EIGEN_UNALIGNED_VECTORIZE 0 #endif #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR #undef EIGEN_DEFAULT_TO_ROW_MAJOR #endif #define EIGEN_DEBUG_ASSIGN #include "main.h" #include <typeinfo> // Disable "ignoring attributes on template argument" // for packet_traits<Packet*> // => The only workaround would be to wrap _m128 and the likes // within wrappers. #if EIGEN_GNUC_STRICT_AT_LEAST(6, 0, 0) #pragma GCC diagnostic ignored "-Wignored-attributes" #endif using internal::demangle_flags; using internal::demangle_traversal; using internal::demangle_unrolling; template <typename Dst, typename Src> bool test_assign(const Dst&, const Src&, int traversal, int unrolling) { EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst, Src); typedef internal::copy_using_evaluator_traits<internal::evaluator<Dst>, internal::evaluator<Src>, internal::assign_op<typename Dst::Scalar, typename Src::Scalar> > traits; // If traversal or unrolling are negative, ignore. bool res = traversal > -1 ? traits::Traversal == traversal : true; if (unrolling > -1) { if (unrolling == InnerUnrolling + CompleteUnrolling) { res = res && (int(traits::Unrolling) == InnerUnrolling || int(traits::Unrolling) == CompleteUnrolling); } else { res = res && int(traits::Unrolling) == unrolling; } } if (!res) { std::cerr << "Src: " << demangle_flags(Src::Flags) << std::endl; std::cerr << " " << demangle_flags(internal::evaluator<Src>::Flags) << std::endl; std::cerr << "Dst: " << demangle_flags(Dst::Flags) << std::endl; std::cerr << " " << demangle_flags(internal::evaluator<Dst>::Flags) << std::endl; traits::debug(); std::cerr << " Expected Traversal == " << demangle_traversal(traversal) << " got " << demangle_traversal(traits::Traversal) << "\n"; std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling) << " got " << demangle_unrolling(traits::Unrolling) << "\n"; } return res; } template <typename Dst, typename Src> bool test_assign(int traversal, int unrolling) { EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst, Src); typedef internal::copy_using_evaluator_traits<internal::evaluator<Dst>, internal::evaluator<Src>, internal::assign_op<typename Dst::Scalar, typename Src::Scalar> > traits; bool res = traits::Traversal == traversal && traits::Unrolling == unrolling; if (!res) { std::cerr << "Src: " << demangle_flags(Src::Flags) << std::endl; std::cerr << " " << demangle_flags(internal::evaluator<Src>::Flags) << std::endl; std::cerr << "Dst: " << demangle_flags(Dst::Flags) << std::endl; std::cerr << " " << demangle_flags(internal::evaluator<Dst>::Flags) << std::endl; traits::debug(); std::cerr << " Expected Traversal == " << demangle_traversal(traversal) << " got " << demangle_traversal(traits::Traversal) << "\n"; std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling) << " got " << demangle_unrolling(traits::Unrolling) << "\n"; } return res; } template <typename Xpr> bool test_redux(const Xpr&, int traversal, int unrolling) { typedef typename Xpr::Scalar Scalar; typedef internal::redux_traits<internal::scalar_sum_op<Scalar, Scalar>, internal::redux_evaluator<Xpr> > traits; bool res = traits::Traversal == traversal && traits::Unrolling == unrolling; if (!res) { std::cerr << demangle_flags(Xpr::Flags) << std::endl; std::cerr << demangle_flags(internal::evaluator<Xpr>::Flags) << std::endl; traits::debug(); std::cerr << " Expected Traversal == " << demangle_traversal(traversal) << " got " << demangle_traversal(traits::Traversal) << "\n"; std::cerr << " Expected Unrolling == " << demangle_unrolling(unrolling) << " got " << demangle_unrolling(traits::Unrolling) << "\n"; } return res; } template <typename Scalar, bool Enable = internal::packet_traits<Scalar>::Vectorizable> struct vectorization_logic { typedef internal::packet_traits<Scalar> PacketTraits; typedef typename internal::packet_traits<Scalar>::type PacketType; typedef typename internal::unpacket_traits<PacketType>::half HalfPacketType; enum { PacketSize = internal::unpacket_traits<PacketType>::size, HalfPacketSize = internal::unpacket_traits<HalfPacketType>::size }; static void run() { typedef Matrix<Scalar, PacketSize, 1> Vector1; typedef Matrix<Scalar, Dynamic, 1> VectorX; typedef Matrix<Scalar, Dynamic, Dynamic> MatrixXX; typedef Matrix<Scalar, PacketSize, PacketSize> Matrix11; typedef Matrix<Scalar, (Matrix11::Flags & RowMajorBit) ? 8 : 2 * PacketSize, (Matrix11::Flags & RowMajorBit) ? 2 * PacketSize : 8> Matrix22; typedef Matrix<Scalar, (Matrix11::Flags & RowMajorBit) ? 16 : 4 * PacketSize, (Matrix11::Flags & RowMajorBit) ? 4 * PacketSize : 16> Matrix44; typedef Matrix<Scalar, (Matrix11::Flags & RowMajorBit) ? 16 : 4 * PacketSize, (Matrix11::Flags & RowMajorBit) ? 4 * PacketSize : 16, DontAlign | EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION> Matrix44u; typedef Matrix<Scalar, 4 * PacketSize, 4 * PacketSize, ColMajor> Matrix44c; typedef Matrix<Scalar, 4 * PacketSize, 4 * PacketSize, RowMajor> Matrix44r; typedef Matrix<Scalar, (PacketSize == 16 ? 8 : PacketSize == 8 ? 4 : PacketSize == 4 ? 2 : PacketSize == 2 ? 1 : /*PacketSize==1 ?*/ 1), (PacketSize == 16 ? 2 : PacketSize == 8 ? 2 : PacketSize == 4 ? 2 : PacketSize == 2 ? 2 : /*PacketSize==1 ?*/ 1)> Matrix1; typedef Matrix<Scalar, (PacketSize == 16 ? 8 : PacketSize == 8 ? 4 : PacketSize == 4 ? 2 : PacketSize == 2 ? 1 : /*PacketSize==1 ?*/ 1), (PacketSize == 16 ? 2 : PacketSize == 8 ? 2 : PacketSize == 4 ? 2 : PacketSize == 2 ? 2 : /*PacketSize==1 ?*/ 1), DontAlign | ((Matrix1::Flags & RowMajorBit) ? RowMajor : ColMajor)> Matrix1u; // this type is made such that it can only be vectorized when viewed as a linear 1D vector typedef Matrix<Scalar, (PacketSize == 16 ? 4 : PacketSize == 8 ? 4 : PacketSize == 4 ? 6 : PacketSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 2 : 3) : /*PacketSize==1 ?*/ 1), (PacketSize == 16 ? 12 : PacketSize == 8 ? 6 : PacketSize == 4 ? 2 : PacketSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 3 : 2) : /*PacketSize==1 ?*/ 3)> Matrix3; #if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT VERIFY(test_assign(Vector1(), Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1() + Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1().cwiseProduct(Vector1()), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1().template cast<Scalar>(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix44(), Matrix44() + Matrix44(), InnerVectorizedTraversal, InnerUnrolling)); VERIFY(test_assign(Matrix44u(), Matrix44() + Matrix44(), EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearTraversal, EIGEN_UNALIGNED_VECTORIZE ? InnerUnrolling : NoUnrolling)); VERIFY(test_assign(Matrix1(), Matrix1() + Matrix1(), (int(Matrix1::InnerSizeAtCompileTime) % int(PacketSize)) == 0 ? InnerVectorizedTraversal : LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix1u(), Matrix1() + Matrix1(), EIGEN_UNALIGNED_VECTORIZE ? ((int(Matrix1::InnerSizeAtCompileTime) % int(PacketSize)) == 0 ? InnerVectorizedTraversal : LinearVectorizedTraversal) : LinearTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix44c().col(1), Matrix44c().col(2) + Matrix44c().col(3), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix44r().row(2), Matrix44r().row(1) + Matrix44r().row(1), InnerVectorizedTraversal, CompleteUnrolling)); if (PacketSize > 1) { typedef Matrix<Scalar, 3, 3, ColMajor> Matrix33c; typedef Matrix<Scalar, 3, 1, ColMajor> Vector3; VERIFY( test_assign(Matrix33c().row(2), Matrix33c().row(1) + Matrix33c().row(1), LinearTraversal, CompleteUnrolling)); // Vectorization depends on too many factors - ignore. VERIFY(test_assign(Vector3(), Vector3() + Vector3(), -1, CompleteUnrolling)); VERIFY(test_assign(Matrix3(), Matrix3().cwiseProduct(Matrix3()), LinearVectorizedTraversal, CompleteUnrolling)); // Vectorization depends on too many factors - ignore. VERIFY( test_assign(Matrix<Scalar, 17, 17>(), Matrix<Scalar, 17, 17>() + Matrix<Scalar, 17, 17>(), -1, NoUnrolling)); VERIFY(test_assign(Matrix11(), Matrix11() + Matrix11(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix11(), Matrix<Scalar, 21, 21>().template block<PacketSize, PacketSize>(2, 3) + Matrix<Scalar, 21, 21>().template block<PacketSize, PacketSize>(3, 2), (EIGEN_UNALIGNED_VECTORIZE) ? InnerVectorizedTraversal : DefaultTraversal, CompleteUnrolling | InnerUnrolling)); VERIFY(test_assign(Vector1(), Matrix11() * Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix11(), Matrix11().lazyProduct(Matrix11()), InnerVectorizedTraversal, InnerUnrolling + CompleteUnrolling)); } VERIFY(test_redux(Vector1(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Vector1().array() * Vector1().array(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux((Vector1().array() * Vector1().array()).col(0), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix<Scalar, PacketSize, 3>(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix3(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix44(), LinearVectorizedTraversal, NoUnrolling)); if (PacketSize > 1) { VERIFY(test_redux(Matrix44().template block < (Matrix1::Flags & RowMajorBit) ? 4 : PacketSize, (Matrix1::Flags & RowMajorBit) ? PacketSize : 4 > (1, 2), SliceVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix44().template block < (Matrix1::Flags & RowMajorBit) ? 2 : PacketSize, (Matrix1::Flags & RowMajorBit) ? PacketSize : 2 > (1, 2), DefaultTraversal, CompleteUnrolling)); } // the actual packet type used by the assignment evaluator is not necessarily PacketType for small fixed-size arrays if (internal::unpacket_traits<typename internal::find_best_packet<Scalar, 2>::type>::size > 2) { // the expression should not be vectorized if the size is too small using Vector2 = Matrix<Scalar, 2, 1, ColMajor>; using VectorMax3 = Matrix<Scalar, Dynamic, 1, ColMajor, 3, 1>; VERIFY(test_assign(Vector2(), Vector2(), LinearTraversal, InnerUnrolling + CompleteUnrolling)); VERIFY(test_assign(VectorMax3(), Vector2(), LinearTraversal, InnerUnrolling + CompleteUnrolling)); VERIFY(test_assign(Vector2(), VectorMax3(), LinearTraversal, InnerUnrolling + CompleteUnrolling)); VERIFY(test_assign(VectorMax3(), VectorMax3(), LinearTraversal, NoUnrolling)); } if (PacketSize > 1 && PacketSize < 8) { // the size of the expression should be deduced at compile time by considering both the lhs and rhs using Lhs = Matrix<Scalar, 7, Dynamic, ColMajor>; using Rhs = Matrix<Scalar, Dynamic, 7, ColMajor>; VERIFY(test_assign(Lhs(), Rhs(), -1, InnerUnrolling + CompleteUnrolling)); } VERIFY( test_redux(Matrix44c().template block<2 * PacketSize, 1>(1, 2), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY( test_redux(Matrix44r().template block<1, 2 * PacketSize>(2, 1), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY((test_assign<Map<Matrix22, AlignedMax, OuterStride<3 * PacketSize> >, Matrix22>(InnerVectorizedTraversal, CompleteUnrolling))); VERIFY((test_assign< Map<Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)>, AlignedMax, InnerStride<3 * PacketSize> >, Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)> >( DefaultTraversal, PacketSize >= 8 ? InnerUnrolling : CompleteUnrolling))); VERIFY((test_assign(Matrix11(), Matrix<Scalar, PacketSize, internal::plain_enum_min(2, PacketSize)>() * Matrix<Scalar, internal::plain_enum_min(2, PacketSize), PacketSize>(), InnerVectorizedTraversal, CompleteUnrolling))); #endif VERIFY(test_assign(MatrixXX(10, 10), MatrixXX(20, 20).block(10, 10, 2, 3), SliceVectorizedTraversal, NoUnrolling)); VERIFY(test_redux(VectorX(10), LinearVectorizedTraversal, NoUnrolling)); } }; template <typename Scalar> struct vectorization_logic<Scalar, false> { static void run() {} }; template <typename Scalar, bool Enable = !internal::is_same< typename internal::unpacket_traits<typename internal::packet_traits<Scalar>::type>::half, typename internal::packet_traits<Scalar>::type>::value> struct vectorization_logic_half { using RealScalar = typename NumTraits<Scalar>::Real; typedef internal::packet_traits<Scalar> PacketTraits; typedef typename internal::unpacket_traits<typename internal::packet_traits<Scalar>::type>::half PacketType; static constexpr int PacketSize = internal::unpacket_traits<PacketType>::size; static void run() { // Some half-packets have a byte size < EIGEN_MIN_ALIGN_BYTES (e.g. Packet2f), // which causes many of these tests to fail since they don't vectorize if // EIGEN_UNALIGNED_VECTORIZE is 0 (the matrix is assumed unaligned). // Adjust the matrix sizes to account for these alignment issues. constexpr int PacketBytes = sizeof(Scalar) * PacketSize; constexpr int MinVSize = int(EIGEN_UNALIGNED_VECTORIZE) ? PacketSize : PacketBytes >= EIGEN_MIN_ALIGN_BYTES ? PacketSize : (EIGEN_MIN_ALIGN_BYTES + sizeof(Scalar) - 1) / sizeof(Scalar); typedef Matrix<Scalar, MinVSize, 1> Vector1; typedef Matrix<Scalar, MinVSize, MinVSize> Matrix11; typedef Matrix<Scalar, 5 * MinVSize, 7, ColMajor> Matrix57; typedef Matrix<Scalar, 3 * MinVSize, 5, ColMajor> Matrix35; typedef Matrix<Scalar, 5 * MinVSize, 7, DontAlign | ColMajor> Matrix57u; typedef Matrix<Scalar, (PacketSize == 16 ? 8 : PacketSize == 8 ? 4 : PacketSize == 4 ? 2 : PacketSize == 2 ? 1 : /*PacketSize==1 ?*/ 1), (PacketSize == 16 ? 2 : PacketSize == 8 ? 2 : PacketSize == 4 ? 2 : PacketSize == 2 ? 2 : /*PacketSize==1 ?*/ 1)> Matrix1; typedef Matrix<Scalar, (PacketSize == 16 ? 8 : PacketSize == 8 ? 4 : PacketSize == 4 ? 2 : PacketSize == 2 ? 1 : /*PacketSize==1 ?*/ 1), (PacketSize == 16 ? 2 : PacketSize == 8 ? 2 : PacketSize == 4 ? 2 : PacketSize == 2 ? 2 : /*PacketSize==1 ?*/ 1), DontAlign | ((Matrix1::Flags & RowMajorBit) ? RowMajor : ColMajor)> Matrix1u; // this type is made such that it can only be vectorized when viewed as a linear 1D vector typedef Matrix<Scalar, (MinVSize == 16 ? 4 : MinVSize == 8 ? 4 : MinVSize == 4 ? 6 : MinVSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 2 : 3) : /*PacketSize==1 ?*/ 1), (MinVSize == 16 ? 12 : MinVSize == 8 ? 6 : MinVSize == 4 ? 2 : MinVSize == 2 ? ((Matrix11::Flags & RowMajorBit) ? 3 : 2) : /*PacketSize==1 ?*/ 3)> Matrix3; #if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT VERIFY(test_assign(Vector1(), Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1() + Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1().template segment<MinVSize>(0).derived(), EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Scalar(RealScalar(2.1)) * Vector1() - Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign( Vector1(), (Scalar(RealScalar(2.1)) * Vector1().template segment<MinVSize>(0) - Vector1().template segment<MinVSize>(0)) .derived(), EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1().cwiseProduct(Vector1()), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Vector1(), Vector1().template cast<Scalar>(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix57(), Matrix57() + Matrix57(), InnerVectorizedTraversal, InnerUnrolling)); VERIFY(test_assign(Matrix57u(), Matrix57() + Matrix57(), EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : LinearTraversal, EIGEN_UNALIGNED_VECTORIZE ? InnerUnrolling : NoUnrolling)); VERIFY(test_assign(Matrix1u(), Matrix1() + Matrix1(), EIGEN_UNALIGNED_VECTORIZE ? ((int(Matrix1::InnerSizeAtCompileTime) % int(PacketSize)) == 0 ? InnerVectorizedTraversal : LinearVectorizedTraversal) : LinearTraversal, CompleteUnrolling)); if (PacketSize > 1) { typedef Matrix<Scalar, 3, 3, ColMajor> Matrix33c; VERIFY( test_assign(Matrix33c().row(2), Matrix33c().row(1) + Matrix33c().row(1), LinearTraversal, CompleteUnrolling)); // Unrolling depends on read costs and unroll limits, which vary - ignore. VERIFY(test_assign(Matrix3(), Matrix3().cwiseQuotient(Matrix3()), PacketTraits::HasDiv ? LinearVectorizedTraversal : LinearTraversal, -1)); VERIFY(test_assign(Matrix<Scalar, 17, 17>(), Matrix<Scalar, 17, 17>() + Matrix<Scalar, 17, 17>(), sizeof(Scalar) == 16 ? InnerVectorizedTraversal : (EIGEN_UNALIGNED_VECTORIZE ? LinearVectorizedTraversal : LinearTraversal), NoUnrolling)); VERIFY(test_assign(Matrix11(), Matrix<Scalar, 17, 17>().template block<MinVSize, MinVSize>(2, 3) + Matrix<Scalar, 17, 17>().template block<MinVSize, MinVSize>(8, 4), EIGEN_UNALIGNED_VECTORIZE ? InnerVectorizedTraversal : DefaultTraversal, InnerUnrolling + CompleteUnrolling)); VERIFY(test_assign(Vector1(), Matrix11() * Vector1(), InnerVectorizedTraversal, CompleteUnrolling)); VERIFY(test_assign(Matrix11(), Matrix11().lazyProduct(Matrix11()), InnerVectorizedTraversal, InnerUnrolling + CompleteUnrolling)); } VERIFY(test_redux(Vector1(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix<Scalar, MinVSize, 3>(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix3(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix35(), LinearVectorizedTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix57().template block < PacketSize == 1 ? 2 : PacketSize, 3 > (1, 0), SliceVectorizedTraversal, CompleteUnrolling)); if (PacketSize > 1) { VERIFY(test_redux(Matrix57().template block<PacketSize, 2>(1, 0), DefaultTraversal, CompleteUnrolling)); } VERIFY((test_assign< Map<Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)>, AlignedMax, InnerStride<3 * PacketSize> >, Matrix<Scalar, internal::plain_enum_max(2, PacketSize), internal::plain_enum_max(2, PacketSize)> >( DefaultTraversal, PacketSize > 4 ? InnerUnrolling : CompleteUnrolling))); VERIFY((test_assign(Matrix57(), Matrix<Scalar, 5 * MinVSize, 3>() * Matrix<Scalar, 3, 7>(), InnerVectorizedTraversal, InnerUnrolling + CompleteUnrolling))); #endif } }; template <typename Scalar> struct vectorization_logic_half<Scalar, false> { static void run() {} }; EIGEN_DECLARE_TEST(vectorization_logic) { #ifdef EIGEN_VECTORIZE CALL_SUBTEST(vectorization_logic<int>::run()); CALL_SUBTEST(vectorization_logic<float>::run()); CALL_SUBTEST(vectorization_logic<double>::run()); CALL_SUBTEST(vectorization_logic<std::complex<float> >::run()); CALL_SUBTEST(vectorization_logic<std::complex<double> >::run()); CALL_SUBTEST(vectorization_logic_half<int>::run()); CALL_SUBTEST(vectorization_logic_half<float>::run()); CALL_SUBTEST(vectorization_logic_half<double>::run()); CALL_SUBTEST(vectorization_logic_half<std::complex<float> >::run()); CALL_SUBTEST(vectorization_logic_half<std::complex<double> >::run()); if (internal::packet_traits<float>::Vectorizable) { VERIFY(test_assign(Matrix<float, 3, 3>(), Matrix<float, 3, 3>() + Matrix<float, 3, 3>(), internal::packet_traits<float>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE ? LinearVectorizedTraversal : LinearTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix<float, 5, 2>(), internal::packet_traits<float>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE ? LinearVectorizedTraversal : LinearTraversal, CompleteUnrolling)); } if (internal::packet_traits<double>::Vectorizable) { VERIFY(test_assign(Matrix<double, 3, 3>(), Matrix<double, 3, 3>() + Matrix<double, 3, 3>(), internal::packet_traits<double>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE ? LinearVectorizedTraversal : LinearTraversal, CompleteUnrolling)); VERIFY(test_redux(Matrix<double, 7, 3>(), internal::packet_traits<double>::Vectorizable && EIGEN_UNALIGNED_VECTORIZE ? LinearVectorizedTraversal : LinearTraversal, CompleteUnrolling)); } #endif // EIGEN_VECTORIZE }