// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BLASUTIL_H #define EIGEN_BLASUTIL_H // This file contains many lightweight helper classes used to // implement and control fast level 2 and level 3 BLAS-like routines. // IWYU pragma: private #include "../InternalHeaderCheck.h" namespace Eigen { namespace internal { // forward declarations template struct gebp_kernel; template struct gemm_pack_rhs; template struct gemm_pack_lhs; template struct general_matrix_matrix_product; template struct general_matrix_vector_product; template struct get_factor { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); } }; template struct get_factor::Real> { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE typename NumTraits::Real run(const Scalar& x) { return numext::real(x); } }; template class BlasVectorMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar* data) : m_data(data) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { return m_data[i]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { return ploadt(m_data + i); } template EIGEN_DEVICE_FUNC bool aligned(Index i) const { return (std::uintptr_t(m_data + i) % sizeof(Packet)) == 0; } protected: Scalar* m_data; }; template class BlasLinearMapper; template class BlasLinearMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar* data, Index incr = 1) : m_data(data) { EIGEN_ONLY_USED_FOR_DEBUG(incr); eigen_assert(incr == 1); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i) const { internal::prefetch(&operator()(i)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { return ploadt(m_data + i); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index n, Index offset = 0) const { return ploadt_partial(m_data + i, n, offset); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType load(Index i) const { return ploadt(m_data + i); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType& p) const { pstoret(m_data + i, p); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, const PacketType& p, Index n, Index offset = 0) const { pstoret_partial(m_data + i, p, n, offset); } protected: Scalar* m_data; }; // Lightweight helper class to access matrix coefficients. template class blas_data_mapper; // TMP to help PacketBlock store implementation. // There's currently no known use case for PacketBlock load. // The default implementation assumes ColMajor order. // It always store each packet sequentially one `stride` apart. template struct PacketBlockManagement { PacketBlockManagement pbm; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, const PacketBlock& block) const { pbm.store(to, stride, i, j, block); pstoreu(to + i + (j + idx) * stride, block.packet[idx]); } }; // PacketBlockManagement specialization to take care of RowMajor order without ifs. template struct PacketBlockManagement { PacketBlockManagement pbm; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, const PacketBlock& block) const { pbm.store(to, stride, i, j, block); pstoreu(to + j + (i + idx) * stride, block.packet[idx]); } }; template struct PacketBlockManagement { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, const PacketBlock& block) const { EIGEN_UNUSED_VARIABLE(to); EIGEN_UNUSED_VARIABLE(stride); EIGEN_UNUSED_VARIABLE(i); EIGEN_UNUSED_VARIABLE(j); EIGEN_UNUSED_VARIABLE(block); } }; template struct PacketBlockManagement { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store(Scalar* to, const Index stride, Index i, Index j, const PacketBlock& block) const { EIGEN_UNUSED_VARIABLE(to); EIGEN_UNUSED_VARIABLE(stride); EIGEN_UNUSED_VARIABLE(i); EIGEN_UNUSED_VARIABLE(j); EIGEN_UNUSED_VARIABLE(block); } }; template class blas_data_mapper { public: typedef BlasLinearMapper LinearMapper; typedef blas_data_mapper SubMapper; typedef BlasVectorMapper VectorMapper; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr = 1) : m_data(data), m_stride(stride) { EIGEN_ONLY_USED_FOR_DEBUG(incr); eigen_assert(incr == 1); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { return SubMapper(&operator()(i, j), m_stride); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { return VectorMapper(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i, Index j) const { internal::prefetch(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder == RowMajor ? j + i * m_stride : i + j * m_stride]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { return ploadt(&operator()(i, j)); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index j, Index n, Index offset = 0) const { return ploadt_partial(&operator()(i, j), n, offset); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { return ploadt(&operator()(i, j)); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Index j, const PacketType& p) const { pstoret(&operator()(i, j), p); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, Index j, const PacketType& p, Index n, Index offset = 0) const { pstoret_partial(&operator()(i, j), p, n, offset); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket& p) const { pscatter(&operator()(i, j), p, m_stride); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { return pgather(&operator()(i, j), m_stride); } EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } EIGEN_DEVICE_FUNC const Index incr() const { return 1; } EIGEN_DEVICE_FUNC constexpr const Scalar* data() const { return m_data; } EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { if (std::uintptr_t(m_data) % sizeof(Scalar)) { return -1; } return internal::first_default_aligned(m_data, size); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock& block) const { PacketBlockManagement pbm; pbm.store(m_data, m_stride, i, j, block); } protected: Scalar* EIGEN_RESTRICT m_data; const Index m_stride; }; // Implementation of non-natural increment (i.e. inner-stride != 1) // The exposed API is not complete yet compared to the Incr==1 case // because some features makes less sense in this case. template class BlasLinearMapper { public: EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar* data, Index incr) : m_data(data), m_incr(incr) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { internal::prefetch(&operator()(i)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { return m_data[i * m_incr.value()]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i) const { return pgather(m_data + i * m_incr.value(), m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index n, Index /*offset*/ = 0) const { return pgather_partial(m_data + i * m_incr.value(), m_incr.value(), n); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType& p) const { pscatter(m_data + i * m_incr.value(), p, m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, const PacketType& p, Index n, Index /*offset*/ = 0) const { pscatter_partial(m_data + i * m_incr.value(), p, m_incr.value(), n); } protected: Scalar* m_data; const internal::variable_if_dynamic m_incr; }; template class blas_data_mapper { public: typedef BlasLinearMapper LinearMapper; typedef blas_data_mapper SubMapper; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr) : m_data(data), m_stride(stride), m_incr(incr) {} EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { return SubMapper(&operator()(i, j), m_stride, m_incr.value()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { return LinearMapper(&operator()(i, j), m_incr.value()); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(Index i, Index j) const { internal::prefetch(&operator()(i, j)); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder == RowMajor ? j * m_incr.value() + i * m_stride : i * m_incr.value() + j * m_stride]; } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacket(Index i, Index j) const { return pgather(&operator()(i, j), m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketType loadPacketPartial(Index i, Index j, Index n, Index /*offset*/ = 0) const { return pgather_partial(&operator()(i, j), m_incr.value(), n); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const { return pgather(&operator()(i, j), m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Index j, const PacketType& p) const { pscatter(&operator()(i, j), p, m_incr.value()); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketPartial(Index i, Index j, const PacketType& p, Index n, Index /*offset*/ = 0) const { pscatter_partial(&operator()(i, j), p, m_incr.value(), n); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket& p) const { pscatter(&operator()(i, j), p, m_stride); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { return pgather(&operator()(i, j), m_stride); } // storePacketBlock_helper defines a way to access values inside the PacketBlock, this is essentially required by the // Complex types. template struct storePacketBlock_helper { storePacketBlock_helper spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { spbh.store(sup, i, j, block); sup->template storePacket(i, j + idx, block.packet[idx]); } }; template struct storePacketBlock_helper, n, idx> { storePacketBlock_helper, n, idx - 1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { spbh.store(sup, i, j, block); sup->template storePacket(i, j + idx, block.packet[idx]); } }; template struct storePacketBlock_helper, n, idx> { storePacketBlock_helper, n, idx - 1> spbh; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( const blas_data_mapper* sup, Index i, Index j, const PacketBlock& block) const { spbh.store(sup, i, j, block); for (int l = 0; l < unpacket_traits::size; l++) { std::complex* v = &sup->operator()(i + l, j + idx); v->real(block.packet[idx].v[2 * l + 0]); v->imag(block.packet[idx].v[2 * l + 1]); } } }; template struct storePacketBlock_helper { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( const blas_data_mapper*, Index, Index, const PacketBlock&) const {} }; template struct storePacketBlock_helper, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( const blas_data_mapper*, Index, Index, const PacketBlock&) const {} }; template struct storePacketBlock_helper, n, -1> { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void store( const blas_data_mapper*, Index, Index, const PacketBlock&) const {} }; // This function stores a PacketBlock on m_data, this approach is really quite slow compare to Incr=1 and should be // avoided when possible. template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacketBlock(Index i, Index j, const PacketBlock& block) const { storePacketBlock_helper spb; spb.store(this, i, j, block); } EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } EIGEN_DEVICE_FUNC const Index incr() const { return m_incr.value(); } EIGEN_DEVICE_FUNC constexpr Scalar* data() const { return m_data; } protected: Scalar* EIGEN_RESTRICT m_data; const Index m_stride; const internal::variable_if_dynamic m_incr; }; // lightweight helper class to access matrix coefficients (const version) template class const_blas_data_mapper : public blas_data_mapper { public: typedef const_blas_data_mapper SubMapper; EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar* data, Index stride) : blas_data_mapper(data, stride) {} EIGEN_ALWAYS_INLINE SubMapper getSubMapper(Index i, Index j) const { return SubMapper(&(this->operator()(i, j)), this->m_stride); } }; /* Helper class to analyze the factors of a Product expression. * In particular it allows to pop out operator-, scalar multiples, * and conjugate */ template struct blas_traits { typedef typename traits::Scalar Scalar; typedef const XprType& ExtractType; typedef XprType ExtractType_; enum { IsComplex = NumTraits::IsComplex, IsTransposed = false, NeedToConjugate = false, HasUsableDirectAccess = ((int(XprType::Flags) & DirectAccessBit) && (bool(XprType::IsVectorAtCompileTime) || int(inner_stride_at_compile_time::ret) == 1)) ? 1 : 0, HasScalarFactor = false }; typedef std::conditional_t DirectLinearAccessType; EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return x; } EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } }; // pop conjugate template struct blas_traits, NestedXpr> > : blas_traits { typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; enum { IsComplex = NumTraits::IsComplex, NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex }; EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } }; // pop scalar multiple template struct blas_traits< CwiseBinaryOp, const CwiseNullaryOp, Plain>, NestedXpr> > : blas_traits { enum { HasScalarFactor = true }; typedef blas_traits Base; typedef CwiseBinaryOp, const CwiseNullaryOp, Plain>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC ExtractType extract(const XprType& x) { return Base::extract(x.rhs()); } EIGEN_DEVICE_FUNC static inline EIGEN_DEVICE_FUNC Scalar extractScalarFactor(const XprType& x) { return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); } }; template struct blas_traits< CwiseBinaryOp, NestedXpr, const CwiseNullaryOp, Plain> > > : blas_traits { enum { HasScalarFactor = true }; typedef blas_traits Base; typedef CwiseBinaryOp, NestedXpr, const CwiseNullaryOp, Plain> > XprType; typedef typename Base::ExtractType ExtractType; EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); } EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; } }; template struct blas_traits, const CwiseNullaryOp, Plain1>, const CwiseNullaryOp, Plain2> > > : blas_traits, Plain1> > {}; // pop opposite template struct blas_traits, NestedXpr> > : blas_traits { enum { HasScalarFactor = true }; typedef blas_traits Base; typedef CwiseUnaryOp, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { return -Base::extractScalarFactor(x.nestedExpression()); } }; // pop/push transpose template struct blas_traits > : blas_traits { typedef typename NestedXpr::Scalar Scalar; typedef blas_traits Base; typedef Transpose XprType; typedef Transpose ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS typedef Transpose ExtractType_; typedef std::conditional_t DirectLinearAccessType; enum { IsTransposed = Base::IsTransposed ? 0 : 1 }; EIGEN_DEVICE_FUNC static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); } EIGEN_DEVICE_FUNC static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } }; template struct blas_traits : blas_traits {}; template ::HasUsableDirectAccess> struct extract_data_selector { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static const typename T::Scalar* run(const T& m) { return blas_traits::extract(m).data(); } }; template struct extract_data_selector { EIGEN_DEVICE_FUNC static typename T::Scalar* run(const T&) { return 0; } }; template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE const typename T::Scalar* extract_data(const T& m) { return extract_data_selector::run(m); } /** * \c combine_scalar_factors extracts and multiplies factors from GEMM and GEMV products. * There is a specialization for booleans */ template struct combine_scalar_factors_impl { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const Lhs& lhs, const Rhs& rhs) { return blas_traits::extractScalarFactor(lhs) * blas_traits::extractScalarFactor(rhs); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static ResScalar run(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) { return alpha * blas_traits::extractScalarFactor(lhs) * blas_traits::extractScalarFactor(rhs); } }; template struct combine_scalar_factors_impl { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const Lhs& lhs, const Rhs& rhs) { return blas_traits::extractScalarFactor(lhs) && blas_traits::extractScalarFactor(rhs); } EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static bool run(const bool& alpha, const Lhs& lhs, const Rhs& rhs) { return alpha && blas_traits::extractScalarFactor(lhs) && blas_traits::extractScalarFactor(rhs); } }; template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const ResScalar& alpha, const Lhs& lhs, const Rhs& rhs) { return combine_scalar_factors_impl::run(alpha, lhs, rhs); } template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE ResScalar combine_scalar_factors(const Lhs& lhs, const Rhs& rhs) { return combine_scalar_factors_impl::run(lhs, rhs); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_BLASUTIL_H