// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007 Julien Pommier // Copyright (C) 2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /* The sin and cos and functions of this file come from * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ */ #ifndef EIGEN_MATH_FUNCTIONS_SSE_H #define EIGEN_MATH_FUNCTIONS_SSE_H #include "../Default/GenericPacketMathFunctions.h" namespace Eigen { namespace internal { template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f plog(const Packet4f& _x) { return plog_float(_x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pexp(const Packet4f& _x) { return pexp_float(_x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d pexp(const Packet2d& x) { return pexp_double(x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psin(const Packet4f& _x) { return psin_float(_x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pcos(const Packet4f& _x) { return pcos_float(_x); } #if EIGEN_FAST_MATH // Functions for sqrt. // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step // of Newton's method, at a cost of 1-2 bits of precision as opposed to the // exact solution. It does not handle +inf, or denormalized numbers correctly. // The main advantage of this approach is not just speed, but also the fact that // it can be inlined and pipelined with other computations, further reducing its // effective latency. This is similar to Quake3's fast inverse square root. // For detail see here: http://www.beyond3d.com/content/articles/8/ template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psqrt(const Packet4f& _x) { Packet4f half = pmul(_x, pset1(.5f)); Packet4f denormal_mask = _mm_and_ps( _mm_cmpge_ps(_x, _mm_setzero_ps()), _mm_cmplt_ps(_x, pset1((std::numeric_limits::min)()))); // Compute approximate reciprocal sqrt. Packet4f x = _mm_rsqrt_ps(_x); // Do a single step of Newton's iteration. x = pmul(x, psub(pset1(1.5f), pmul(half, pmul(x,x)))); // Flush results for denormals to zero. return _mm_andnot_ps(denormal_mask, pmul(_x,x)); } #else template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psqrt(const Packet4f& x) { return _mm_sqrt_ps(x); } #endif template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d psqrt(const Packet2d& x) { return _mm_sqrt_pd(x); } #if EIGEN_FAST_MATH template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f prsqrt(const Packet4f& _x) { _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000u); _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(nan, 0x7fc00000u); _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f); _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f); _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000u); Packet4f neg_half = pmul(_x, p4f_minus_half); // select only the inverse sqrt of positive normal inputs (denormals are // flushed to zero and cause infs as well). Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min); Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x)); // Fill in NaNs and Infs for the negative/zero entries. Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps()); Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask); Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan), _mm_and_ps(zero_mask, p4f_inf)); // Do a single step of Newton's iteration. x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five)); // Insert NaNs and Infs in all the right places. return _mm_or_ps(x, infs_and_nans); } #else template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f prsqrt(const Packet4f& x) { // Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation. return _mm_div_ps(pset1(1.0f), _mm_sqrt_ps(x)); } #endif template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d prsqrt(const Packet2d& x) { // Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation. return _mm_div_pd(pset1(1.0), _mm_sqrt_pd(x)); } // Hyperbolic Tangent function. template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f ptanh(const Packet4f& x) { return internal::generic_fast_tanh_float(x); } } // end namespace internal namespace numext { template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sqrt(const float &x) { return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x)))); } template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sqrt(const double &x) { #if EIGEN_COMP_GNUC_STRICT // This works around a GCC bug generating poor code for _mm_sqrt_pd // See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x)))); #else return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x)))); #endif } } // end namespace numex } // end namespace Eigen #endif // EIGEN_MATH_FUNCTIONS_SSE_H