// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2007 Benoit Jacob // // Eigen is free software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the Free Software // Foundation; either version 2 or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more // details. // // You should have received a copy of the GNU General Public License along // with Eigen; if not, write to the Free Software Foundation, Inc., 51 // Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. // // As a special exception, if other files instantiate templates or use macros // or functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. This exception does not invalidate any other reasons why a work // based on this file might be covered by the GNU General Public License. #include "main.h" template void adjoint(const MatrixType& m) { /* this test covers the following files: Transpose.h Conjugate.h Dot.h */ typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols), mzero = MatrixType::zero(rows, cols), identity = Matrix ::identity(rows), square = Matrix ::random(rows, rows); VectorType v1 = VectorType::random(rows), v2 = VectorType::random(rows), v3 = VectorType::random(rows), vzero = VectorType::zero(rows); Scalar s1 = NumTraits::random(), s2 = NumTraits::random(); // check involutivity of adjoint, transpose, conjugate QVERIFY(m1.transpose().transpose().isApprox(m1)); QVERIFY(m1.conjugate().conjugate().isApprox(m1)); QVERIFY(m1.adjoint().adjoint().isApprox(m1)); // check basic compatibility of adjoint, transpose, conjugate QVERIFY(m1.transpose().conjugate().adjoint().isApprox(m1)); QVERIFY(m1.adjoint().conjugate().transpose().isApprox(m1)); if(!NumTraits::IsComplex) QVERIFY(m1.adjoint().transpose().isApprox(m1)); // check multiplicative behavior QVERIFY((m1.transpose() * m2).transpose().isApprox(m2.transpose() * m1)); QVERIFY((m1.adjoint() * m2).adjoint().isApprox(m2.adjoint() * m1)); QVERIFY((m1.transpose() * m2).conjugate().isApprox(m1.adjoint() * m2.conjugate())); QVERIFY((s1 * m1).transpose().isApprox(s1 * m1.transpose())); QVERIFY((s1 * m1).conjugate().isApprox(NumTraits::conj(s1) * m1.conjugate())); QVERIFY((s1 * m1).adjoint().isApprox(NumTraits::conj(s1) * m1.adjoint())); // check basic properties of dot, norm, norm2 typedef typename NumTraits::Real RealScalar; QVERIFY(NumTraits::isApprox((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3))); QVERIFY(NumTraits::isApprox(v3.dot(s1 * v1 + s2 * v2), NumTraits::conj(s1) * v3.dot(v1) + NumTraits::conj(s2) * v3.dot(v2))); QVERIFY(NumTraits::isApprox(NumTraits::conj(v1.dot(v2)), v2.dot(v1))); QVERIFY(NumTraits::isApprox(abs(v1.dot(v1)), v1.norm2())); if(NumTraits::HasFloatingPoint) QVERIFY(NumTraits::isApprox(v1.norm2(), v1.norm() * v1.norm())); QVERIFY(NumTraits::isMuchSmallerThan(abs(vzero.dot(v1)), 1)); QVERIFY(NumTraits::isMuchSmallerThan(vzero.norm(), 1)); // check compatibility of dot and adjoint QVERIFY(NumTraits::isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2))); } void EigenTest::testAdjoint() { adjoint(Matrix()); adjoint(Matrix, 4, 4>()); adjoint(MatrixXcf(3, 3)); adjoint(MatrixXi(8, 12)); adjoint(MatrixXd(20, 20)); }