// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #define EIGEN_TESTMAP_MAX_SIZE 256 template void map_class_vector(const VectorType& m) { typedef typename VectorType::Scalar Scalar; Index size = m.size(); Scalar* array1 = internal::aligned_new(size); Scalar* array2 = internal::aligned_new(size); Scalar* array3 = new Scalar[size + 1]; // In case of no alignment, avoid division by zero. constexpr int alignment = (std::max)(EIGEN_MAX_ALIGN_BYTES, 1); Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3; Scalar array4[EIGEN_TESTMAP_MAX_SIZE]; Map(array1, size) = VectorType::Random(size); Map(array2, size) = Map(array1, size); Map(array3unaligned, size) = Map(array1, size); Map(array4, size) = Map(array1, size); VectorType ma1 = Map(array1, size); VectorType ma2 = Map(array2, size); VectorType ma3 = Map(array3unaligned, size); VectorType ma4 = Map(array4, size); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); VERIFY_IS_EQUAL(ma1, ma4); #ifdef EIGEN_VECTORIZE if (internal::packet_traits::Vectorizable && size >= AlignedMax) VERIFY_RAISES_ASSERT((Map(array3unaligned, size))) #endif internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; } template void map_class_matrix(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; Index rows = m.rows(), cols = m.cols(), size = rows * cols; Scalar s1 = internal::random(); // array1 and array2 -> aligned heap allocation Scalar* array1 = internal::aligned_new(size); for (int i = 0; i < size; i++) array1[i] = Scalar(1); Scalar* array2 = internal::aligned_new(size); for (int i = 0; i < size; i++) array2[i] = Scalar(1); // array3unaligned -> unaligned pointer to heap Scalar* array3 = new Scalar[size + 1]; Index sizep1 = size + 1; // <- without this temporary MSVC 2103 generates bad code for (Index i = 0; i < sizep1; i++) array3[i] = Scalar(1); // In case of no alignment, avoid division by zero. constexpr int alignment = (std::max)(EIGEN_MAX_ALIGN_BYTES, 1); Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3; Scalar array4[256]; if (size <= 256) for (int i = 0; i < size; i++) array4[i] = Scalar(1); Map map1(array1, rows, cols); Map map2(array2, rows, cols); Map map3(array3unaligned, rows, cols); Map map4(array4, rows, cols); VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows, cols)); VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows, cols)); VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows, cols)); map1 = MatrixType::Random(rows, cols); map2 = map1; map3 = map1; MatrixType ma1 = map1; MatrixType ma2 = map2; MatrixType ma3 = map3; VERIFY_IS_EQUAL(map1, map2); VERIFY_IS_EQUAL(map1, map3); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); VERIFY_IS_EQUAL(ma1, map3); VERIFY_IS_APPROX(s1 * map1, s1 * map2); VERIFY_IS_APPROX(s1 * ma1, s1 * ma2); VERIFY_IS_EQUAL(s1 * ma1, s1 * ma3); VERIFY_IS_APPROX(s1 * map1, s1 * map3); map2 *= s1; map3 *= s1; VERIFY_IS_APPROX(s1 * map1, map2); VERIFY_IS_APPROX(s1 * map1, map3); if (size <= 256) { VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows, cols)); map4 = map1; MatrixType ma4 = map4; VERIFY_IS_EQUAL(map1, map4); VERIFY_IS_EQUAL(ma1, map4); VERIFY_IS_EQUAL(ma1, ma4); VERIFY_IS_APPROX(s1 * map1, s1 * map4); map4 *= s1; VERIFY_IS_APPROX(s1 * map1, map4); } internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; } template void map_static_methods(const VectorType& m) { typedef typename VectorType::Scalar Scalar; Index size = m.size(); Scalar* array1 = internal::aligned_new(size); Scalar* array2 = internal::aligned_new(size); Scalar* array3 = new Scalar[size + 1]; // In case of no alignment, avoid division by zero. constexpr int alignment = (std::max)(EIGEN_MAX_ALIGN_BYTES, 1); Scalar* array3unaligned = (std::uintptr_t(array3) % alignment) == 0 ? array3 + 1 : array3; VectorType::MapAligned(array1, size) = VectorType::Random(size); VectorType::Map(array2, size) = VectorType::Map(array1, size); VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); VectorType ma1 = VectorType::Map(array1, size); VectorType ma2 = VectorType::MapAligned(array2, size); VectorType ma3 = VectorType::Map(array3unaligned, size); VERIFY_IS_EQUAL(ma1, ma2); VERIFY_IS_EQUAL(ma1, ma3); internal::aligned_delete(array1, size); internal::aligned_delete(array2, size); delete[] array3; } template void check_const_correctness(const PlainObjectType&) { // there's a lot that we can't test here while still having this test compile! // the only possible approach would be to run a script trying to compile stuff and checking that it fails. // CMake can help with that. // verify that map-to-const don't have LvalueBit typedef std::add_const_t ConstPlainObjectType; VERIFY(!(internal::traits >::Flags & LvalueBit)); VERIFY(!(internal::traits >::Flags & LvalueBit)); VERIFY(!(Map::Flags & LvalueBit)); VERIFY(!(Map::Flags & LvalueBit)); } EIGEN_DECLARE_TEST(mapped_matrix) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(map_class_vector(Matrix())); CALL_SUBTEST_1(check_const_correctness(Matrix())); CALL_SUBTEST_2(map_class_vector(Vector4d())); CALL_SUBTEST_2(map_class_vector(VectorXd(13))); CALL_SUBTEST_2(check_const_correctness(Matrix4d())); CALL_SUBTEST_3(map_class_vector(RowVector4f())); CALL_SUBTEST_4(map_class_vector(VectorXcf(8))); CALL_SUBTEST_5(map_class_vector(VectorXi(12))); CALL_SUBTEST_5(check_const_correctness(VectorXi(12))); CALL_SUBTEST_1(map_class_matrix(Matrix())); CALL_SUBTEST_2(map_class_matrix(Matrix4d())); CALL_SUBTEST_11(map_class_matrix(Matrix())); CALL_SUBTEST_4(map_class_matrix(MatrixXcf(internal::random(1, 10), internal::random(1, 10)))); CALL_SUBTEST_5(map_class_matrix(MatrixXi(internal::random(1, 10), internal::random(1, 10)))); CALL_SUBTEST_6(map_static_methods(Matrix())); CALL_SUBTEST_7(map_static_methods(Vector3f())); CALL_SUBTEST_8(map_static_methods(RowVector3d())); CALL_SUBTEST_9(map_static_methods(VectorXcd(8))); CALL_SUBTEST_10(map_static_methods(VectorXf(12))); } }