// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Jitse Niesen // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MATRIX_EXPONENTIAL #define EIGEN_MATRIX_EXPONENTIAL /** \brief Compute the matrix exponential. * * \param M matrix whose exponential is to be computed. * \param result pointer to the matrix in which to store the result. * * The matrix exponential of \f$ M \f$ is defined by * \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f] * The matrix exponential can be used to solve linear ordinary * differential equations: the solution of \f$ y' = My \f$ with the * initial condition \f$ y(0) = y_0 \f$ is given by * \f$ y(t) = \exp(M) y_0 \f$. * * The cost of the computation is approximately \f$ 20 n^3 \f$ for * matrices of size \f$ n \f$. The number 20 depends weakly on the * norm of the matrix. * * The matrix exponential is computed using the scaling-and-squaring * method combined with Padé approximation. The matrix is first * rescaled, then the exponential of the reduced matrix is computed * approximant, and then the rescaling is undone by repeated * squaring. The degree of the Padé approximant is chosen such * that the approximation error is less than the round-off * error. However, errors may accumulate during the squaring phase. * * Details of the algorithm can be found in: Nicholas J. Higham, "The * scaling and squaring method for the matrix exponential revisited," * SIAM J. %Matrix Anal. Applic., 26:1179–1193, * 2005. * * \note \p M has to be a matrix of \c float, \c double, * \c complex or \c complex . */ template EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase &M, typename MatrixBase::PlainMatrixType* result); /** \internal \brief Internal helper functions for computing the * matrix exponential. */ namespace MatrixExponentialInternal { #ifdef _MSC_VER template Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); } #endif /** \internal \brief Compute the (3,3)-Padé approximant to * the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. * * \param M Argument of matrix exponential * \param Id Identity matrix of same size as M * \param tmp Temporary storage, to be provided by the caller * \param M2 Temporary storage, to be provided by the caller * \param U Even-degree terms in numerator of Padé approximant * \param V Odd-degree terms in numerator of Padé approximant */ template EIGEN_STRONG_INLINE void pade3(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, MatrixType& M2, MatrixType& U, MatrixType& V) { typedef typename ei_traits::Scalar Scalar; const Scalar b[] = {120., 60., 12., 1.}; M2.noalias() = M * M; tmp = b[3]*M2 + b[1]*Id; U.noalias() = M * tmp; V = b[2]*M2 + b[0]*Id; } /** \internal \brief Compute the (5,5)-Padé approximant to * the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. * * \param M Argument of matrix exponential * \param Id Identity matrix of same size as M * \param tmp Temporary storage, to be provided by the caller * \param M2 Temporary storage, to be provided by the caller * \param U Even-degree terms in numerator of Padé approximant * \param V Odd-degree terms in numerator of Padé approximant */ template EIGEN_STRONG_INLINE void pade5(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, MatrixType& M2, MatrixType& U, MatrixType& V) { typedef typename ei_traits::Scalar Scalar; const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.}; M2.noalias() = M * M; MatrixType M4 = M2 * M2; tmp = b[5]*M4 + b[3]*M2 + b[1]*Id; U.noalias() = M * tmp; V = b[4]*M4 + b[2]*M2 + b[0]*Id; } /** \internal \brief Compute the (7,7)-Padé approximant to * the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. * * \param M Argument of matrix exponential * \param Id Identity matrix of same size as M * \param tmp Temporary storage, to be provided by the caller * \param M2 Temporary storage, to be provided by the caller * \param U Even-degree terms in numerator of Padé approximant * \param V Odd-degree terms in numerator of Padé approximant */ template EIGEN_STRONG_INLINE void pade7(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, MatrixType& M2, MatrixType& U, MatrixType& V) { typedef typename ei_traits::Scalar Scalar; const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; M2.noalias() = M * M; MatrixType M4 = M2 * M2; MatrixType M6 = M4 * M2; tmp = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; U.noalias() = M * tmp; V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; } /** \internal \brief Compute the (9,9)-Padé approximant to * the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. * * \param M Argument of matrix exponential * \param Id Identity matrix of same size as M * \param tmp Temporary storage, to be provided by the caller * \param M2 Temporary storage, to be provided by the caller * \param U Even-degree terms in numerator of Padé approximant * \param V Odd-degree terms in numerator of Padé approximant */ template EIGEN_STRONG_INLINE void pade9(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, MatrixType& M2, MatrixType& U, MatrixType& V) { typedef typename ei_traits::Scalar Scalar; const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., 2162160., 110880., 3960., 90., 1.}; M2.noalias() = M * M; MatrixType M4 = M2 * M2; MatrixType M6 = M4 * M2; MatrixType M8 = M6 * M2; tmp = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; U.noalias() = M * tmp; V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; } /** \internal \brief Compute the (13,13)-Padé approximant to * the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(M) \f$ around \f$ M = 0 \f$. * * \param M Argument of matrix exponential * \param Id Identity matrix of same size as M * \param tmp Temporary storage, to be provided by the caller * \param M2 Temporary storage, to be provided by the caller * \param U Even-degree terms in numerator of Padé approximant * \param V Odd-degree terms in numerator of Padé approximant */ template EIGEN_STRONG_INLINE void pade13(const MatrixType &M, const MatrixType& Id, MatrixType& tmp, MatrixType& M2, MatrixType& U, MatrixType& V) { typedef typename ei_traits::Scalar Scalar; const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., 1187353796428800., 129060195264000., 10559470521600., 670442572800., 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; M2.noalias() = M * M; MatrixType M4 = M2 * M2; MatrixType M6 = M4 * M2; V = b[13]*M6 + b[11]*M4 + b[9]*M2; tmp.noalias() = M6 * V; tmp += b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id; U.noalias() = M * tmp; tmp = b[12]*M6 + b[10]*M4 + b[8]*M2; V.noalias() = M6 * tmp; V += b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id; } /** \internal \brief Helper class for computing Padé * approximants to the exponential. */ template ::Scalar>::Real> struct computeUV_selector { /** \internal \brief Compute Padé approximant to the exponential. * * Computes \p U, \p V and \p squarings such that \f$ (V+U)(V-U)^{-1} \f$ * is a Padé of \f$ \exp(2^{-\mbox{squarings}}M) \f$ * around \f$ M = 0 \f$. The degree of the Padé * approximant and the value of squarings are chosen such that * the approximation error is no more than the round-off error. * * \param M Argument of matrix exponential * \param Id Identity matrix of same size as M * \param tmp1 Temporary storage, to be provided by the caller * \param tmp2 Temporary storage, to be provided by the caller * \param U Even-degree terms in numerator of Padé approximant * \param V Odd-degree terms in numerator of Padé approximant * \param l1norm L1 norm of M * \param squarings Pointer to integer containing number of times * that the result needs to be squared to find the * matrix exponential */ static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2, MatrixType& U, MatrixType& V, float l1norm, int* squarings); }; template struct computeUV_selector { static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2, MatrixType& U, MatrixType& V, float l1norm, int* squarings) { *squarings = 0; if (l1norm < 4.258730016922831e-001) { pade3(M, Id, tmp1, tmp2, U, V); } else if (l1norm < 1.880152677804762e+000) { pade5(M, Id, tmp1, tmp2, U, V); } else { const float maxnorm = 3.925724783138660f; *squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm))); MatrixType A = M / std::pow(typename ei_traits::Scalar(2), *squarings); pade7(A, Id, tmp1, tmp2, U, V); } } }; template struct computeUV_selector { static void run(const MatrixType &M, const MatrixType& Id, MatrixType& tmp1, MatrixType& tmp2, MatrixType& U, MatrixType& V, float l1norm, int* squarings) { *squarings = 0; if (l1norm < 1.495585217958292e-002) { pade3(M, Id, tmp1, tmp2, U, V); } else if (l1norm < 2.539398330063230e-001) { pade5(M, Id, tmp1, tmp2, U, V); } else if (l1norm < 9.504178996162932e-001) { pade7(M, Id, tmp1, tmp2, U, V); } else if (l1norm < 2.097847961257068e+000) { pade9(M, Id, tmp1, tmp2, U, V); } else { const double maxnorm = 5.371920351148152; *squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm))); MatrixType A = M / std::pow(typename ei_traits::Scalar(2), *squarings); pade13(A, Id, tmp1, tmp2, U, V); } } }; /** \internal \brief Compute the matrix exponential. * * \param M matrix whose exponential is to be computed. * \param result pointer to the matrix in which to store the result. */ template void compute(const MatrixType &M, MatrixType* result) { MatrixType num(M.rows(), M.cols()); MatrixType den(M.rows(), M.cols()); MatrixType U(M.rows(), M.cols()); MatrixType V(M.rows(), M.cols()); MatrixType Id = MatrixType::Identity(M.rows(), M.cols()); float l1norm = static_cast(M.cwise().abs().colwise().sum().maxCoeff()); int squarings; computeUV_selector::run(M, Id, num, den, U, V, l1norm, &squarings); num = U + V; // numerator of Pade approximant den = -U + V; // denominator of Pade approximant den.partialLu().solve(num, result); for (int i=0; i EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase &M, typename MatrixBase::PlainMatrixType* result) { ei_assert(M.rows() == M.cols()); MatrixExponentialInternal::compute(M.eval(), result); } #endif // EIGEN_MATRIX_EXPONENTIAL