// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(_MSC_VER) && (_MSC_VER == 1800) // This unit test takes forever to compile in Release mode with MSVC 2013, // multiple hours. So let's switch off optimization for this one. #pragma optimize("", off) #endif static long int nb_temporaries; inline void on_temporary_creation() { // here's a great place to set a breakpoint when debugging failures in this test! nb_temporaries++; } #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \ { on_temporary_creation(); } #include "sparse.h" #define VERIFY_EVALUATION_COUNT(XPR, N) \ { \ nb_temporaries = 0; \ CALL_SUBTEST(XPR); \ if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY((#XPR) && nb_temporaries == N); \ } template <typename SparseMatrixType> void sparse_product() { typedef typename SparseMatrixType::StorageIndex StorageIndex; Index n = 100; const Index rows = internal::random<Index>(1, n); const Index cols = internal::random<Index>(1, n); const Index depth = internal::random<Index>(1, n); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8. / (rows * cols), 0.2); typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix; typedef Matrix<Scalar, Dynamic, 1> DenseVector; typedef Matrix<Scalar, 1, Dynamic> RowDenseVector; typedef SparseVector<Scalar, 0, StorageIndex> ColSpVector; typedef SparseVector<Scalar, RowMajor, StorageIndex> RowSpVector; Scalar s1 = internal::random<Scalar>(); Scalar s2 = internal::random<Scalar>(); // test matrix-matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth); DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols); DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols); DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); DenseMatrix refMat5 = DenseMatrix::Random(depth, cols); DenseMatrix refMat6 = DenseMatrix::Random(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); // DenseVector dv1 = DenseVector::Random(rows); SparseMatrixType m2(rows, depth); SparseMatrixType m2t(depth, rows); SparseMatrixType m3(depth, cols); SparseMatrixType m3t(cols, depth); SparseMatrixType m4(rows, cols); SparseMatrixType m4t(cols, rows); SparseMatrixType m6(rows, rows); initSparse(density, refMat2, m2); initSparse(density, refMat2t, m2t); initSparse(density, refMat3, m3); initSparse(density, refMat3t, m3t); initSparse(density, refMat4, m4); initSparse(density, refMat4t, m4t); initSparse(density, refMat6, m6); // int c = internal::random<int>(0,depth-1); // sparse * sparse VERIFY_IS_APPROX(m4 = m2 * m3, refMat4 = refMat2 * refMat3); VERIFY_IS_APPROX(m4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(m4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose()); VERIFY_IS_APPROX(m4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); VERIFY_IS_APPROX(m4 = m2 * m3 / s1, refMat4 = refMat2 * refMat3 / s1); VERIFY_IS_APPROX(m4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1); VERIFY_IS_APPROX(m4 = s2 * m2 * m3 * s1, refMat4 = s2 * refMat2 * refMat3 * s1); VERIFY_IS_APPROX(m4 = (m2 + m2) * m3, refMat4 = (refMat2 + refMat2) * refMat3); VERIFY_IS_APPROX(m4 = m2 * m3.leftCols(cols / 2), refMat4 = refMat2 * refMat3.leftCols(cols / 2)); VERIFY_IS_APPROX(m4 = m2 * (m3 + m3).leftCols(cols / 2), refMat4 = refMat2 * (refMat3 + refMat3).leftCols(cols / 2)); VERIFY_IS_APPROX(m4 = (m2 * m3).pruned(0), refMat4 = refMat2 * refMat3); VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3).pruned(0), refMat4 = refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(m4 = (m2t.transpose() * m3t.transpose()).pruned(0), refMat4 = refMat2t.transpose() * refMat3t.transpose()); VERIFY_IS_APPROX(m4 = (m2 * m3t.transpose()).pruned(0), refMat4 = refMat2 * refMat3t.transpose()); #ifndef EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT // make sure the right product implementation is called: if ((!SparseMatrixType::IsRowMajor) && m2.rows() <= m3.cols()) { VERIFY_EVALUATION_COUNT(m4 = m2 * m3, 2); // 2 for transposing and get a sorted result. VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).pruned(0), 1); VERIFY_EVALUATION_COUNT(m4 = (m2 * m3).eval().pruned(0), 4); } #endif // and that pruning is effective: { DenseMatrix Ad(2, 2); Ad << -1, 1, 1, 1; SparseMatrixType As(Ad.sparseView()), B(2, 2); VERIFY_IS_EQUAL((As * As.transpose()).eval().nonZeros(), 4); VERIFY_IS_EQUAL((Ad * Ad.transpose()).eval().sparseView().eval().nonZeros(), 2); VERIFY_IS_EQUAL((As * As.transpose()).pruned(1e-6).eval().nonZeros(), 2); } // dense ?= sparse * sparse VERIFY_IS_APPROX(dm4 = m2 * m3, refMat4 = refMat2 * refMat3); VERIFY_IS_APPROX(dm4 += m2 * m3, refMat4 += refMat2 * refMat3); VERIFY_IS_APPROX(dm4 -= m2 * m3, refMat4 -= refMat2 * refMat3); VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3, refMat4 += refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3, refMat4 -= refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(dm4 = m2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 += m2t.transpose() * m3t.transpose(), refMat4 += refMat2t.transpose() * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 -= m2t.transpose() * m3t.transpose(), refMat4 -= refMat2t.transpose() * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 = m2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 += m2 * m3t.transpose(), refMat4 += refMat2 * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 -= m2 * m3t.transpose(), refMat4 -= refMat2 * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 = m2 * m3 * s1, refMat4 = refMat2 * refMat3 * s1); // test aliasing m4 = m2; refMat4 = refMat2; VERIFY_IS_APPROX(m4 = m4 * m3, refMat4 = refMat4 * refMat3); // sparse * dense matrix VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3); VERIFY_IS_APPROX(dm4 = m2 * refMat3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3, refMat4 = refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(dm4 = m2t.transpose() * refMat3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 = m2 * refMat3, refMat4 = refMat2 * refMat3); VERIFY_IS_APPROX(dm4 = dm4 + m2 * refMat3, refMat4 = refMat4 + refMat2 * refMat3); VERIFY_IS_APPROX(dm4 += m2 * refMat3, refMat4 += refMat2 * refMat3); VERIFY_IS_APPROX(dm4 -= m2 * refMat3, refMat4 -= refMat2 * refMat3); VERIFY_IS_APPROX(dm4.noalias() += m2 * refMat3, refMat4 += refMat2 * refMat3); VERIFY_IS_APPROX(dm4.noalias() -= m2 * refMat3, refMat4 -= refMat2 * refMat3); VERIFY_IS_APPROX(dm4 = m2 * (refMat3 + refMat3), refMat4 = refMat2 * (refMat3 + refMat3)); VERIFY_IS_APPROX(dm4 = m2t.transpose() * (refMat3 + refMat5) * 0.5, refMat4 = refMat2t.transpose() * (refMat3 + refMat5) * 0.5); // sparse * dense vector VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3.col(0), refMat4.col(0) = refMat2 * refMat3.col(0)); VERIFY_IS_APPROX(dm4.col(0) = m2 * refMat3t.transpose().col(0), refMat4.col(0) = refMat2 * refMat3t.transpose().col(0)); VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3.col(0), refMat4.col(0) = refMat2t.transpose() * refMat3.col(0)); VERIFY_IS_APPROX(dm4.col(0) = m2t.transpose() * refMat3t.transpose().col(0), refMat4.col(0) = refMat2t.transpose() * refMat3t.transpose().col(0)); // dense * sparse VERIFY_IS_APPROX(dm4 = refMat2 * m3, refMat4 = refMat2 * refMat3); VERIFY_IS_APPROX(dm4 = dm4 + refMat2 * m3, refMat4 = refMat4 + refMat2 * refMat3); VERIFY_IS_APPROX(dm4 += refMat2 * m3, refMat4 += refMat2 * refMat3); VERIFY_IS_APPROX(dm4 -= refMat2 * m3, refMat4 -= refMat2 * refMat3); VERIFY_IS_APPROX(dm4.noalias() += refMat2 * m3, refMat4 += refMat2 * refMat3); VERIFY_IS_APPROX(dm4.noalias() -= refMat2 * m3, refMat4 -= refMat2 * refMat3); VERIFY_IS_APPROX(dm4 = refMat2 * m3t.transpose(), refMat4 = refMat2 * refMat3t.transpose()); VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3, refMat4 = refMat2t.transpose() * refMat3); VERIFY_IS_APPROX(dm4 = refMat2t.transpose() * m3t.transpose(), refMat4 = refMat2t.transpose() * refMat3t.transpose()); // sparse * dense and dense * sparse outer product { Index c = internal::random<Index>(0, depth - 1); Index r = internal::random<Index>(0, rows - 1); Index c1 = internal::random<Index>(0, cols - 1); Index r1 = internal::random<Index>(0, depth - 1); DenseMatrix dm5 = DenseMatrix::Random(depth, cols); VERIFY_IS_APPROX(m4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(m4 = m2.middleCols(c, 1) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(dm4 = m2.col(c) * dm5.col(c1).transpose(), refMat4 = refMat2.col(c) * dm5.col(c1).transpose()); VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleCols(c, 1).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.col(c).transpose(), refMat4 = dm5.col(c1) * refMat2.col(c).transpose()); VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.col(c).transpose(), refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.col(c).transpose(), refMat4 = dm5.row(r1).transpose() * refMat2.col(c).transpose()); VERIFY_IS_APPROX(m4 = m2.row(r).transpose() * dm5.col(c1).transpose(), refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(m4 = m2.middleRows(r, 1).transpose() * dm5.col(c1).transpose(), refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose()); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(dm4 = m2.row(r).transpose() * dm5.col(c1).transpose(), refMat4 = refMat2.row(r).transpose() * dm5.col(c1).transpose()); VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r)); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(m4 = dm5.col(c1) * m2.middleRows(r, 1), refMat4 = dm5.col(c1) * refMat2.row(r)); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(dm4 = dm5.col(c1) * m2.row(r), refMat4 = dm5.col(c1) * refMat2.row(r)); VERIFY_IS_APPROX(m4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r)); VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array() != 0).count()); VERIFY_IS_APPROX(dm4 = dm5.row(r1).transpose() * m2.row(r), refMat4 = dm5.row(r1).transpose() * refMat2.row(r)); } VERIFY_IS_APPROX(m6 = m6 * m6, refMat6 = refMat6 * refMat6); // sparse matrix * sparse vector ColSpVector cv0(cols), cv1; DenseVector dcv0(cols), dcv1; initSparse(2 * density, dcv0, cv0); RowSpVector rv0(depth), rv1; RowDenseVector drv0(depth), drv1(rv1); initSparse(2 * density, drv0, rv0); VERIFY_IS_APPROX(cv1 = m3 * cv0, dcv1 = refMat3 * dcv0); VERIFY_IS_APPROX(rv1 = rv0 * m3, drv1 = drv0 * refMat3); VERIFY_IS_APPROX(cv1 = m3t.adjoint() * cv0, dcv1 = refMat3t.adjoint() * dcv0); VERIFY_IS_APPROX(cv1 = rv0 * m3, dcv1 = drv0 * refMat3); VERIFY_IS_APPROX(rv1 = m3 * cv0, drv1 = refMat3 * dcv0); } // test matrix - diagonal product { DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix d3 = DenseMatrix::Zero(rows, cols); DiagonalMatrix<Scalar, Dynamic> d1(DenseVector::Random(cols)); DiagonalMatrix<Scalar, Dynamic> d2(DenseVector::Random(rows)); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); VERIFY_IS_APPROX(m3 = m2 * d1, refM3 = refM2 * d1); VERIFY_IS_APPROX(m3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2); VERIFY_IS_APPROX(m3 = d2 * m2, refM3 = d2 * refM2); VERIFY_IS_APPROX(m3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose()); // also check with a SparseWrapper: DenseVector v1 = DenseVector::Random(cols); DenseVector v2 = DenseVector::Random(rows); DenseVector v3 = DenseVector::Random(rows); VERIFY_IS_APPROX(m3 = m2 * v1.asDiagonal(), refM3 = refM2 * v1.asDiagonal()); VERIFY_IS_APPROX(m3 = m2.transpose() * v2.asDiagonal(), refM3 = refM2.transpose() * v2.asDiagonal()); VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2, refM3 = v2.asDiagonal() * refM2); VERIFY_IS_APPROX(m3 = v1.asDiagonal() * m2.transpose(), refM3 = v1.asDiagonal() * refM2.transpose()); VERIFY_IS_APPROX(m3 = v2.asDiagonal() * m2 * v1.asDiagonal(), refM3 = v2.asDiagonal() * refM2 * v1.asDiagonal()); VERIFY_IS_APPROX(v2 = m2 * v1.asDiagonal() * v1, refM2 * v1.asDiagonal() * v1); VERIFY_IS_APPROX(v3 = v2.asDiagonal() * m2 * v1, v2.asDiagonal() * refM2 * v1); // evaluate to a dense matrix to check the .row() and .col() iterator functions VERIFY_IS_APPROX(d3 = m2 * d1, refM3 = refM2 * d1); VERIFY_IS_APPROX(d3 = m2.transpose() * d2, refM3 = refM2.transpose() * d2); VERIFY_IS_APPROX(d3 = d2 * m2, refM3 = d2 * refM2); VERIFY_IS_APPROX(d3 = d1 * m2.transpose(), refM3 = d1 * refM2.transpose()); } // test self-adjoint and triangular-view products { DenseMatrix b = DenseMatrix::Random(rows, rows); DenseMatrix x = DenseMatrix::Random(rows, rows); DenseMatrix refX = DenseMatrix::Random(rows, rows); DenseMatrix refUp = DenseMatrix::Zero(rows, rows); DenseMatrix refLo = DenseMatrix::Zero(rows, rows); DenseMatrix refS = DenseMatrix::Zero(rows, rows); DenseMatrix refA = DenseMatrix::Zero(rows, rows); SparseMatrixType mUp(rows, rows); SparseMatrixType mLo(rows, rows); SparseMatrixType mS(rows, rows); SparseMatrixType mA(rows, rows); initSparse<Scalar>(density, refA, mA); do { initSparse<Scalar>(density, refUp, mUp, ForceRealDiag | /*ForceNonZeroDiag|*/ MakeUpperTriangular); } while (refUp.isZero()); refLo = refUp.adjoint(); mLo = mUp.adjoint(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; // TODO be able to address the diagonal.... for (int k = 0; k < mS.outerSize(); ++k) for (typename SparseMatrixType::InnerIterator it(mS, k); it; ++it) if (it.index() == k) it.valueRef() *= Scalar(0.5); VERIFY_IS_APPROX(refS.adjoint(), refS); VERIFY_IS_APPROX(mS.adjoint(), mS); VERIFY_IS_APPROX(mS, refS); VERIFY_IS_APPROX(x = mS * b, refX = refS * b); // sparse selfadjointView with dense matrices VERIFY_IS_APPROX(x = mUp.template selfadjointView<Upper>() * b, refX = refS * b); VERIFY_IS_APPROX(x = mLo.template selfadjointView<Lower>() * b, refX = refS * b); VERIFY_IS_APPROX(x = mS.template selfadjointView<Upper | Lower>() * b, refX = refS * b); VERIFY_IS_APPROX(x = b * mUp.template selfadjointView<Upper>(), refX = b * refS); VERIFY_IS_APPROX(x = b * mLo.template selfadjointView<Lower>(), refX = b * refS); VERIFY_IS_APPROX(x = b * mS.template selfadjointView<Upper | Lower>(), refX = b * refS); VERIFY_IS_APPROX(x.noalias() += mUp.template selfadjointView<Upper>() * b, refX += refS * b); VERIFY_IS_APPROX(x.noalias() -= mLo.template selfadjointView<Lower>() * b, refX -= refS * b); VERIFY_IS_APPROX(x.noalias() += mS.template selfadjointView<Upper | Lower>() * b, refX += refS * b); // sparse selfadjointView with sparse matrices SparseMatrixType mSres(rows, rows); VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>() * mS, refX = refLo.template selfadjointView<Lower>() * refS); VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(), refX = refS * refLo.template selfadjointView<Lower>()); // sparse triangularView with dense matrices VERIFY_IS_APPROX(x = mA.template triangularView<Upper>() * b, refX = refA.template triangularView<Upper>() * b); VERIFY_IS_APPROX(x = mA.template triangularView<Lower>() * b, refX = refA.template triangularView<Lower>() * b); VERIFY_IS_APPROX(x = b * mA.template triangularView<Upper>(), refX = b * refA.template triangularView<Upper>()); VERIFY_IS_APPROX(x = b * mA.template triangularView<Lower>(), refX = b * refA.template triangularView<Lower>()); // sparse triangularView with sparse matrices VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>() * mS, refX = refA.template triangularView<Lower>() * refS); VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>()); VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>() * mS, refX = refA.template triangularView<Upper>() * refS); VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), refX = refS * refA.template triangularView<Upper>()); } } // New test for Bug in SparseTimeDenseProduct template <typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test() { // This code does not compile with afflicted versions of the bug SparseMatrixType sm1(3, 2); DenseMatrixType m2(2, 2); sm1.setZero(); m2.setZero(); DenseMatrixType m3 = sm1 * m2; // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct // bug SparseMatrixType sm2(20000, 2); sm2.setZero(); DenseMatrixType m4(sm2 * m2); VERIFY_IS_APPROX(m4(0, 0), 0.0); } template <typename Scalar> void bug_942() { typedef Matrix<Scalar, Dynamic, 1> Vector; typedef SparseMatrix<Scalar, ColMajor> ColSpMat; typedef SparseMatrix<Scalar, RowMajor> RowSpMat; ColSpMat cmA(1, 1); cmA.insert(0, 0) = 1; RowSpMat rmA(1, 1); rmA.insert(0, 0) = 1; Vector d(1); d[0] = 2; double res = 2; VERIFY_IS_APPROX((cmA * d.asDiagonal()).eval().coeff(0, 0), res); VERIFY_IS_APPROX((d.asDiagonal() * rmA).eval().coeff(0, 0), res); VERIFY_IS_APPROX((rmA * d.asDiagonal()).eval().coeff(0, 0), res); VERIFY_IS_APPROX((d.asDiagonal() * cmA).eval().coeff(0, 0), res); } template <typename Real> void test_mixing_types() { typedef std::complex<Real> Cplx; typedef SparseMatrix<Real> SpMatReal; typedef SparseMatrix<Cplx> SpMatCplx; typedef SparseMatrix<Cplx, RowMajor> SpRowMatCplx; typedef Matrix<Real, Dynamic, Dynamic> DenseMatReal; typedef Matrix<Cplx, Dynamic, Dynamic> DenseMatCplx; Index n = internal::random<Index>(1, 100); double density = (std::max)(8. / static_cast<double>(n * n), 0.2); SpMatReal sR1(n, n); SpMatCplx sC1(n, n), sC2(n, n), sC3(n, n); SpRowMatCplx sCR(n, n); DenseMatReal dR1(n, n); DenseMatCplx dC1(n, n), dC2(n, n), dC3(n, n); initSparse<Real>(density, dR1, sR1); initSparse<Cplx>(density, dC1, sC1); initSparse<Cplx>(density, dC2, sC2); VERIFY_IS_APPROX(sC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1); VERIFY_IS_APPROX(sC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1); VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sCR = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1); VERIFY_IS_APPROX(sCR = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1); VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sC2 = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1); VERIFY_IS_APPROX(sC2 = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1); VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sC2 = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); VERIFY_IS_APPROX(sC2 = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sC2 = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); VERIFY_IS_APPROX(sC2 = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sCR = (sR1 * sC1).pruned(), dC3 = dR1.template cast<Cplx>() * dC1); VERIFY_IS_APPROX(sCR = (sC1 * sR1).pruned(), dC3 = dC1 * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1); VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(sCR = (sR1 * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); VERIFY_IS_APPROX(sCR = (sC1 * sR1.transpose()).pruned(), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(sCR = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); VERIFY_IS_APPROX(sCR = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(dC2 = (sR1 * sC1), dC3 = dR1.template cast<Cplx>() * dC1); VERIFY_IS_APPROX(dC2 = (sC1 * sR1), dC3 = dC1 * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1), dC3 = dR1.template cast<Cplx>().transpose() * dC1); VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1), dC3 = dC1.transpose() * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(dC2 = (sR1 * sC1.transpose()), dC3 = dR1.template cast<Cplx>() * dC1.transpose()); VERIFY_IS_APPROX(dC2 = (sC1 * sR1.transpose()), dC3 = dC1 * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(dC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose()); VERIFY_IS_APPROX(dC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose()); VERIFY_IS_APPROX(dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1); VERIFY_IS_APPROX(dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1); VERIFY_IS_APPROX(dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>()); VERIFY_IS_APPROX(dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>()); VERIFY_IS_APPROX(dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1); VERIFY_IS_APPROX(dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0)); VERIFY_IS_APPROX(dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>()); VERIFY_IS_APPROX(dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0)); } // Test mixed storage types template <int OrderA, int OrderB, int OrderC> void test_mixed_storage_imp() { typedef float Real; typedef Matrix<Real, Dynamic, Dynamic> DenseMat; // Case: Large inputs but small result { SparseMatrix<Real, OrderA> A(8, 512); SparseMatrix<Real, OrderB> B(512, 8); DenseMat refA(8, 512); DenseMat refB(512, 8); initSparse<Real>(0.1, refA, A); initSparse<Real>(0.1, refB, B); SparseMatrix<Real, OrderC, std::int8_t> result; SparseMatrix<Real, OrderC> result_large; DenseMat refResult; VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB); } // Case: Small input but large result { SparseMatrix<Real, OrderA, std::int8_t> A(127, 8); SparseMatrix<Real, OrderB, std::int8_t> B(8, 127); DenseMat refA(127, 8); DenseMat refB(8, 127); initSparse<Real>(0.01, refA, A); initSparse<Real>(0.01, refB, B); SparseMatrix<Real, OrderC> result; SparseMatrix<Real, OrderC> result_large; DenseMat refResult; VERIFY_IS_APPROX(result = (A * B), refResult = refA * refB); } } void test_mixed_storage() { test_mixed_storage_imp<RowMajor, RowMajor, RowMajor>(); test_mixed_storage_imp<RowMajor, RowMajor, ColMajor>(); test_mixed_storage_imp<RowMajor, ColMajor, RowMajor>(); test_mixed_storage_imp<RowMajor, ColMajor, ColMajor>(); test_mixed_storage_imp<ColMajor, RowMajor, RowMajor>(); test_mixed_storage_imp<ColMajor, RowMajor, ColMajor>(); test_mixed_storage_imp<ColMajor, ColMajor, RowMajor>(); test_mixed_storage_imp<ColMajor, ColMajor, ColMajor>(); } EIGEN_DECLARE_TEST(sparse_product) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1((sparse_product<SparseMatrix<double, ColMajor> >())); CALL_SUBTEST_1((sparse_product<SparseMatrix<double, RowMajor> >())); CALL_SUBTEST_1((bug_942<double>())); CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, ColMajor> >())); CALL_SUBTEST_2((sparse_product<SparseMatrix<std::complex<double>, RowMajor> >())); CALL_SUBTEST_3((sparse_product<SparseMatrix<float, ColMajor, long int> >())); CALL_SUBTEST_4(( sparse_product_regression_test<SparseMatrix<double, RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >())); CALL_SUBTEST_5((test_mixing_types<float>())); CALL_SUBTEST_5((test_mixed_storage())); } }