// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include using Eigen::MatrixXf; using Eigen::Tensor; static void test_simple() { MatrixXf m1(3, 3); MatrixXf m2(3, 3); m1.setRandom(); m2.setRandom(); TensorMap > mat1(m1.data(), 3, 3); TensorMap > mat2(m2.data(), 3, 3); Tensor mat3(3, 3); mat3 = mat1; typedef Tensor::DimensionPair DimPair; Eigen::array dims; dims[0] = DimPair(1, 0); mat3 = mat3.contract(mat2, dims).eval(); VERIFY_IS_APPROX(mat3(0, 0), (m1 * m2).eval()(0, 0)); VERIFY_IS_APPROX(mat3(0, 1), (m1 * m2).eval()(0, 1)); VERIFY_IS_APPROX(mat3(0, 2), (m1 * m2).eval()(0, 2)); VERIFY_IS_APPROX(mat3(1, 0), (m1 * m2).eval()(1, 0)); VERIFY_IS_APPROX(mat3(1, 1), (m1 * m2).eval()(1, 1)); VERIFY_IS_APPROX(mat3(1, 2), (m1 * m2).eval()(1, 2)); VERIFY_IS_APPROX(mat3(2, 0), (m1 * m2).eval()(2, 0)); VERIFY_IS_APPROX(mat3(2, 1), (m1 * m2).eval()(2, 1)); VERIFY_IS_APPROX(mat3(2, 2), (m1 * m2).eval()(2, 2)); } static void test_const() { MatrixXf input(3, 3); input.setRandom(); MatrixXf output = input; output.rowwise() -= input.colwise().maxCoeff(); Eigen::array depth_dim; depth_dim[0] = 0; Tensor::Dimensions dims2d; dims2d[0] = 1; dims2d[1] = 3; Eigen::array bcast; bcast[0] = 3; bcast[1] = 1; const TensorMap > input_tensor(input.data(), 3, 3); Tensor output_tensor = (input_tensor - input_tensor.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast)); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { VERIFY_IS_APPROX(output(i, j), output_tensor(i, j)); } } } EIGEN_DECLARE_TEST(cxx11_tensor_forced_eval) { CALL_SUBTEST(test_simple()); CALL_SUBTEST(test_const()); }