// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007 Julien Pommier // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) // Copyright (C) 2009-2018 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /* The exp and log functions of this file initially come from * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ */ namespace Eigen { namespace internal { template EIGEN_STRONG_INLINE Packet pfrexp_float(const Packet& a, Packet& exponent) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_126f = pset1(126.0f); const Packet cst_half = pset1(0.5f); const Packet cst_inv_mant_mask = pset1frombits(~0x7f800000u); exponent = psub(pcast(pshiftright<23>(preinterpret(a))), cst_126f); return por(pand(a, cst_inv_mant_mask), cst_half); } template EIGEN_STRONG_INLINE Packet pldexp_float(Packet a, Packet exponent) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_127 = pset1(127.f); // return a * 2^exponent PacketI ei = pcast(padd(exponent, cst_127)); return pmul(a, preinterpret(pshiftleft<23>(ei))); } // Natural logarithm // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can // be easily approximated by a polynomial centered on m=1 for stability. // TODO(gonnet): Further reduce the interval allowing for lower-degree // polynomial interpolants -> ... -> profit! template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet plog_float(const Packet _x) { Packet x = _x; const Packet cst_1 = pset1(1.0f); const Packet cst_half = pset1(0.5f); // The smallest non denormalized float number. const Packet cst_min_norm_pos = pset1frombits( 0x00800000u); const Packet cst_minus_inf = pset1frombits( 0xff800000u); const Packet cst_pos_inf = pset1frombits( 0x7f800000u); // Polynomial coefficients. const Packet cst_cephes_SQRTHF = pset1(0.707106781186547524f); const Packet cst_cephes_log_p0 = pset1(7.0376836292E-2f); const Packet cst_cephes_log_p1 = pset1(-1.1514610310E-1f); const Packet cst_cephes_log_p2 = pset1(1.1676998740E-1f); const Packet cst_cephes_log_p3 = pset1(-1.2420140846E-1f); const Packet cst_cephes_log_p4 = pset1(+1.4249322787E-1f); const Packet cst_cephes_log_p5 = pset1(-1.6668057665E-1f); const Packet cst_cephes_log_p6 = pset1(+2.0000714765E-1f); const Packet cst_cephes_log_p7 = pset1(-2.4999993993E-1f); const Packet cst_cephes_log_p8 = pset1(+3.3333331174E-1f); const Packet cst_cephes_log_q1 = pset1(-2.12194440e-4f); const Packet cst_cephes_log_q2 = pset1(0.693359375f); // Truncate input values to the minimum positive normal. x = pmax(x, cst_min_norm_pos); Packet e; // extract significant in the range [0.5,1) and exponent x = pfrexp(x,e); // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) // and shift by -1. The values are then centered around 0, which improves // the stability of the polynomial evaluation. // if( x < SQRTHF ) { // e -= 1; // x = x + x - 1.0; // } else { x = x - 1.0; } Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); Packet tmp = pand(x, mask); x = psub(x, cst_1); e = psub(e, pand(cst_1, mask)); x = padd(x, tmp); Packet x2 = pmul(x, x); Packet x3 = pmul(x2, x); // Evaluate the polynomial approximant of degree 8 in three parts, probably // to improve instruction-level parallelism. Packet y, y1, y2; y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7); y = pmadd(y, x, cst_cephes_log_p2); y1 = pmadd(y1, x, cst_cephes_log_p5); y2 = pmadd(y2, x, cst_cephes_log_p8); y = pmadd(y, x3, y1); y = pmadd(y, x3, y2); y = pmul(y, x3); // Add the logarithm of the exponent back to the result of the interpolation. y1 = pmul(e, cst_cephes_log_q1); tmp = pmul(x2, cst_half); y = padd(y, y1); x = psub(x, tmp); y2 = pmul(e, cst_cephes_log_q2); x = padd(x, y); x = padd(x, y2); Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); Packet iszero_mask = pcmp_eq(_x,pzero(_x)); Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); // Filter out invalid inputs, i.e.: // - negative arg will be NAN // - 0 will be -INF // - +INF will be +INF return pselect(iszero_mask, cst_minus_inf, por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); } // Exponential function. Works by writing "x = m*log(2) + r" where // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pexp_float(const Packet _x) { const Packet cst_1 = pset1(1.0f); const Packet cst_half = pset1(0.5f); const Packet cst_exp_hi = pset1( 88.3762626647950f); const Packet cst_exp_lo = pset1(-88.3762626647949f); const Packet cst_cephes_LOG2EF = pset1(1.44269504088896341f); const Packet cst_cephes_exp_p0 = pset1(1.9875691500E-4f); const Packet cst_cephes_exp_p1 = pset1(1.3981999507E-3f); const Packet cst_cephes_exp_p2 = pset1(8.3334519073E-3f); const Packet cst_cephes_exp_p3 = pset1(4.1665795894E-2f); const Packet cst_cephes_exp_p4 = pset1(1.6666665459E-1f); const Packet cst_cephes_exp_p5 = pset1(5.0000001201E-1f); // Clamp x. Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo); // Express exp(x) as exp(m*ln(2) + r), start by extracting // m = floor(x/ln(2) + 0.5). Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating // truncation errors. Packet r; #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD const Packet cst_nln2 = pset1(-0.6931471805599453f); r = pmadd(m, cst_nln2, x); #else const Packet cst_cephes_exp_C1 = pset1(0.693359375f); const Packet cst_cephes_exp_C2 = pset1(-2.12194440e-4f); r = psub(x, pmul(m, cst_cephes_exp_C1)); r = psub(r, pmul(m, cst_cephes_exp_C2)); #endif Packet r2 = pmul(r, r); // TODO(gonnet): Split into odd/even polynomials and try to exploit // instruction-level parallelism. Packet y = cst_cephes_exp_p0; y = pmadd(y, r, cst_cephes_exp_p1); y = pmadd(y, r, cst_cephes_exp_p2); y = pmadd(y, r, cst_cephes_exp_p3); y = pmadd(y, r, cst_cephes_exp_p4); y = pmadd(y, r, cst_cephes_exp_p5); y = pmadd(y, r2, r); y = padd(y, cst_1); // Return 2^m * exp(r). return pmax(pldexp(y,m), _x); } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pexp_double(const Packet _x) { Packet x = _x; const Packet cst_1 = pset1(1.0); const Packet cst_2 = pset1(2.0); const Packet cst_half = pset1(0.5); const Packet cst_exp_hi = pset1(709.437); const Packet cst_exp_lo = pset1(-709.436139303); const Packet cst_cephes_LOG2EF = pset1(1.4426950408889634073599); const Packet cst_cephes_exp_p0 = pset1(1.26177193074810590878e-4); const Packet cst_cephes_exp_p1 = pset1(3.02994407707441961300e-2); const Packet cst_cephes_exp_p2 = pset1(9.99999999999999999910e-1); const Packet cst_cephes_exp_q0 = pset1(3.00198505138664455042e-6); const Packet cst_cephes_exp_q1 = pset1(2.52448340349684104192e-3); const Packet cst_cephes_exp_q2 = pset1(2.27265548208155028766e-1); const Packet cst_cephes_exp_q3 = pset1(2.00000000000000000009e0); const Packet cst_cephes_exp_C1 = pset1(0.693145751953125); const Packet cst_cephes_exp_C2 = pset1(1.42860682030941723212e-6); Packet tmp, fx; // clamp x x = pmax(pmin(x, cst_exp_hi), cst_exp_lo); // Express exp(x) as exp(g + n*log(2)). fx = pmadd(cst_cephes_LOG2EF, x, cst_half); // Get the integer modulus of log(2), i.e. the "n" described above. fx = pfloor(fx); // Get the remainder modulo log(2), i.e. the "g" described above. Subtract // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last // digits right. tmp = pmul(fx, cst_cephes_exp_C1); Packet z = pmul(fx, cst_cephes_exp_C2); x = psub(x, tmp); x = psub(x, z); Packet x2 = pmul(x, x); // Evaluate the numerator polynomial of the rational interpolant. Packet px = cst_cephes_exp_p0; px = pmadd(px, x2, cst_cephes_exp_p1); px = pmadd(px, x2, cst_cephes_exp_p2); px = pmul(px, x); // Evaluate the denominator polynomial of the rational interpolant. Packet qx = cst_cephes_exp_q0; qx = pmadd(qx, x2, cst_cephes_exp_q1); qx = pmadd(qx, x2, cst_cephes_exp_q2); qx = pmadd(qx, x2, cst_cephes_exp_q3); // I don't really get this bit, copied from the SSE2 routines, so... // TODO(gonnet): Figure out what is going on here, perhaps find a better // rational interpolant? x = pdiv(px, psub(qx, px)); x = pmadd(cst_2, x, cst_1); // Construct the result 2^n * exp(g) = e * x. The max is used to catch // non-finite values in the input. return pmax(pldexp(x,fx), _x); } /* The code is the rewriting of the cephes sinf/cosf functions. Precision is excellent as long as x < 8192 (I did not bother to take into account the special handling they have for greater values -- it does not return garbage for arguments over 8192, though, but the extra precision is missing). Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the surprising but correct result. */ template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet psincos_float(const Packet& _x) { typedef typename unpacket_traits::integer_packet PacketI; const Packet cst_1 = pset1(1.0f); const Packet cst_half = pset1(0.5f); const PacketI csti_1 = pset1(1); const PacketI csti_not1 = pset1(~1); const PacketI csti_2 = pset1(2); const PacketI csti_3 = pset1(3); const Packet cst_sign_mask = pset1frombits(0x80000000u); const Packet cst_minus_cephes_DP1 = pset1(-0.78515625f); const Packet cst_minus_cephes_DP2 = pset1(-2.4187564849853515625e-4f); const Packet cst_minus_cephes_DP3 = pset1(-3.77489497744594108e-8f); const Packet cst_sincof_p0 = pset1(-1.9515295891E-4f); const Packet cst_sincof_p1 = pset1( 8.3321608736E-3f); const Packet cst_sincof_p2 = pset1(-1.6666654611E-1f); const Packet cst_coscof_p0 = pset1( 2.443315711809948E-005f); const Packet cst_coscof_p1 = pset1(-1.388731625493765E-003f); const Packet cst_coscof_p2 = pset1( 4.166664568298827E-002f); const Packet cst_cephes_FOPI = pset1( 1.27323954473516f); // 4 / M_PI const Packet cst_sincos_max_arg = pset1( 13176795.0f); // Approx. (2**24) / (4/Pi). Packet x = pabs(_x); // Prevent sin/cos from generating values larger than 1.0 in magnitude // for very large arguments by setting x to 0.0. Packet small_or_nan_mask = pcmp_lt_or_nan(x, cst_sincos_max_arg); x = pand(x, small_or_nan_mask); // Scale x by 4/Pi to find x's octant. Packet y = pmul(x, cst_cephes_FOPI); // Get the octant. We'll reduce x by this number of octants or by one more than it. PacketI y_int = pcast(y); // x's from even-numbered octants will translate to octant 0: [0, +Pi/4]. // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0]. // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1). PacketI y_int1 = pand(padd(y_int, csti_1), csti_not1); // could be pbitclear<0>(...) y = pcast(y_int1); // Compute the sign to apply to the polynomial. // sign = third_bit(y_int1) xor signbit(_x) Packet sign_bit = ComputeSine ? pxor(_x, preinterpret(pshiftleft<29>(y_int1))) : preinterpret(pshiftleft<29>(padd(y_int1,csti_3))); sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit // Get the polynomial selection mask from the second bit of y_int1 // We'll calculate both (sin and cos) polynomials and then select from the two. Packet poly_mask = preinterpret(pcmp_eq(pand(y_int1, csti_2), pzero(y_int1))); // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4. // The magic pass: "Extended precision modular arithmetic" // x = ((x - y * DP1) - y * DP2) - y * DP3 x = pmadd(y, cst_minus_cephes_DP1, x); x = pmadd(y, cst_minus_cephes_DP2, x); x = pmadd(y, cst_minus_cephes_DP3, x); Packet x2 = pmul(x,x); // Evaluate the cos(x) polynomial. (0 <= x <= Pi/4) Packet y1 = cst_coscof_p0; y1 = pmadd(y1, x2, cst_coscof_p1); y1 = pmadd(y1, x2, cst_coscof_p2); y1 = pmul(y1, x2); y1 = pmul(y1, x2); y1 = psub(y1, pmul(x2, cst_half)); y1 = padd(y1, cst_1); // Evaluate the sin(x) polynomial. (Pi/4 <= x <= 0) Packet y2 = cst_sincof_p0; y2 = pmadd(y2, x2, cst_sincof_p1); y2 = pmadd(y2, x2, cst_sincof_p2); y2 = pmul(y2, x2); y2 = pmadd(y2, x, x); // Select the correct result from the two polynoms. y = ComputeSine ? pselect(poly_mask,y2,y1) : pselect(poly_mask,y1,y2); // Update the sign return pxor(y, sign_bit); } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet psin_float(const Packet& x) { return psincos_float(x); } template EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet pcos_float(const Packet& x) { return psincos_float(x); } } // end namespace internal } // end namespace Eigen