// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template struct adjoint_specific; template <> struct adjoint_specific { template static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), 0)); // check compatibility of dot and adjoint VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); } }; template <> struct adjoint_specific { template static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { typedef typename NumTraits::Real RealScalar; using std::abs; RealScalar ref = NumTraits::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(), v3.norm()); VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), ref)); VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); // check normalized() and normalize() VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); v3 = v1; v3.normalize(); VERIFY_IS_APPROX(v1, v1.norm() * v3); VERIFY_IS_APPROX(v3, v1.normalized()); VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); // check null inputs VERIFY_IS_APPROX((v1 * 0).normalized(), (v1 * 0)); #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE) RealScalar very_small = (std::numeric_limits::min)(); VERIFY(numext::is_exactly_zero((v1 * very_small).norm())); VERIFY_IS_APPROX((v1 * very_small).normalized(), (v1 * very_small)); v3 = v1 * very_small; v3.normalize(); VERIFY_IS_APPROX(v3, (v1 * very_small)); #endif // check compatibility of dot and adjoint ref = NumTraits::IsInteger ? 0 : (std::max)((std::max)(v1.norm(), v2.norm()), (std::max)((square * v2).norm(), (square.adjoint() * v1).norm())); VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision())); // check that Random().normalized() works: tricky as the random xpr must be evaluated by // normalized() in order to produce a consistent result. VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); } }; template MatrixType RandomMatrix(Index rows, Index cols, Scalar min, Scalar max) { MatrixType M = MatrixType(rows, cols); for (Index i = 0; i < rows; ++i) { for (Index j = 0; j < cols; ++j) { M(i, j) = Eigen::internal::random(min, max); } } return M; } template void adjoint(const MatrixType& m) { /* this test covers the following files: Transpose.h Conjugate.h Dot.h */ using std::abs; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix SquareMatrixType; const Index PacketSize = internal::packet_traits::size; Index rows = m.rows(); Index cols = m.cols(); // Avoid integer overflow by limiting input values. RealScalar rmin = static_cast(NumTraits::IsInteger ? NumTraits::IsSigned ? -100 : 0 : -1); RealScalar rmax = static_cast(NumTraits::IsInteger ? 100 : 1); MatrixType m1 = RandomMatrix(rows, cols, rmin, rmax), m2 = RandomMatrix(rows, cols, rmin, rmax), m3(rows, cols), square = RandomMatrix(rows, rows, rmin, rmax); VectorType v1 = RandomMatrix(rows, 1, rmin, rmax), v2 = RandomMatrix(rows, 1, rmin, rmax), v3 = RandomMatrix(rows, 1, rmin, rmax), vzero = VectorType::Zero(rows); Scalar s1 = internal::random(rmin, rmax), s2 = internal::random(rmin, rmax); // check basic compatibility of adjoint, transpose, conjugate VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); // check multiplicative behavior VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint()); // check basic properties of dot, squaredNorm VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1)); VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm()); adjoint_specific::IsInteger>::run(v1, v2, v3, square, s1, s2); VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast(1)); // like in testBasicStuff, test operator() to check const-qualification Index r = internal::random(0, rows - 1), c = internal::random(0, cols - 1); VERIFY_IS_APPROX(m1.conjugate()(r, c), numext::conj(m1(r, c))); VERIFY_IS_APPROX(m1.adjoint()(c, r), numext::conj(m1(r, c))); // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); if (PacketSize < m3.rows() && PacketSize < m3.cols()) { m3 = m1; Index i = internal::random(0, m3.rows() - PacketSize); Index j = internal::random(0, m3.cols() - PacketSize); m3.template block(i, j).transposeInPlace(); VERIFY_IS_APPROX((m3.template block(i, j)), (m1.template block(i, j).transpose())); m3.template block(i, j).transposeInPlace(); VERIFY_IS_APPROX(m3, m1); } // check inplace adjoint m3 = m1; m3.adjointInPlace(); VERIFY_IS_APPROX(m3, m1.adjoint()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.conjugate()); // check mixed dot product typedef Matrix RealVectorType; RealVectorType rv1 = RandomMatrix(rows, 1, rmin, rmax); VERIFY_IS_APPROX(v1.dot(rv1.template cast()), v1.dot(rv1)); VERIFY_IS_APPROX(rv1.template cast().dot(v1), rv1.dot(v1)); VERIFY(is_same_type(m1, m1.template conjugateIf())); VERIFY(is_same_type(m1.conjugate(), m1.template conjugateIf())); } template void adjoint_extra() { MatrixXcf a(10, 10), b(10, 10); VERIFY_RAISES_ASSERT(a = a.transpose()); VERIFY_RAISES_ASSERT(a = a.transpose() + b); VERIFY_RAISES_ASSERT(a = b + a.transpose()); VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); VERIFY_RAISES_ASSERT(a = a.adjoint()); VERIFY_RAISES_ASSERT(a = a.adjoint() + b); VERIFY_RAISES_ASSERT(a = b + a.adjoint()); // no assertion should be triggered for these cases: a.transpose() = a.transpose(); a.transpose() += a.transpose(); a.transpose() += a.transpose() + b; a.transpose() = a.adjoint(); a.transpose() += a.adjoint(); a.transpose() += a.adjoint() + b; // regression tests for check_for_aliasing MatrixXd c(10, 10); c = 1.0 * MatrixXd::Ones(10, 10) + c; c = MatrixXd::Ones(10, 10) * 1.0 + c; c = c + MatrixXd::Ones(10, 10).cwiseProduct(MatrixXd::Zero(10, 10)); c = MatrixXd::Ones(10, 10) * MatrixXd::Zero(10, 10); // regression for bug 1646 for (int j = 0; j < 10; ++j) { c.col(j).head(j) = c.row(j).head(j); } for (int j = 0; j < 10; ++j) { c.col(j) = c.row(j); } a.conservativeResize(1, 1); a = a.transpose(); a.conservativeResize(0, 0); a = a.transpose(); } EIGEN_DECLARE_TEST(adjoint) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(adjoint(Matrix())); CALL_SUBTEST_2(adjoint(Matrix3d())); CALL_SUBTEST_3(adjoint(Matrix4f())); CALL_SUBTEST_4(adjoint(MatrixXcf(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_5(adjoint( MatrixXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_6(adjoint( MatrixXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); // Complement for 128 bits vectorization: CALL_SUBTEST_8(adjoint(Matrix2d())); CALL_SUBTEST_9(adjoint(Matrix())); // 256 bits vectorization: CALL_SUBTEST_10(adjoint(Matrix())); CALL_SUBTEST_11(adjoint(Matrix())); CALL_SUBTEST_12(adjoint(Matrix())); } // test a large static matrix only once CALL_SUBTEST_7(adjoint(Matrix())); CALL_SUBTEST_13(adjoint_extra<0>()); }