// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2018-2019 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include template std::reverse_iterator make_reverse_iterator(Iterator i) { return std::reverse_iterator(i); } using std::is_sorted; template bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator&) { return true; } template bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator&) { return true; } template bool is_default_constructible_and_assignable(const Iter& it) { VERIFY(std::is_default_constructible::value); VERIFY(std::is_nothrow_default_constructible::value); Iter it2; it2 = it; return (it == it2); } template void check_begin_end_for_loop(Xpr xpr) { const Xpr& cxpr(xpr); Index i = 0; i = 0; for (typename Xpr::iterator it = xpr.begin(); it != xpr.end(); ++it) { VERIFY_IS_EQUAL(*it, xpr[i++]); } i = 0; for (typename Xpr::const_iterator it = xpr.cbegin(); it != xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it, xpr[i++]); } i = 0; for (typename Xpr::const_iterator it = cxpr.begin(); it != cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it, xpr[i++]); } i = 0; for (typename Xpr::const_iterator it = xpr.begin(); it != xpr.end(); ++it) { VERIFY_IS_EQUAL(*it, xpr[i++]); } { // simple API check typename Xpr::const_iterator cit = xpr.begin(); cit = xpr.cbegin(); auto tmp1 = xpr.begin(); VERIFY(tmp1 == xpr.begin()); auto tmp2 = xpr.cbegin(); VERIFY(tmp2 == xpr.cbegin()); } VERIFY(xpr.end() - xpr.begin() == xpr.size()); VERIFY(xpr.cend() - xpr.begin() == xpr.size()); VERIFY(xpr.end() - xpr.cbegin() == xpr.size()); VERIFY(xpr.cend() - xpr.cbegin() == xpr.size()); if (xpr.size() > 0) { VERIFY(xpr.begin() != xpr.end()); VERIFY(xpr.begin() < xpr.end()); VERIFY(xpr.begin() <= xpr.end()); VERIFY(!(xpr.begin() == xpr.end())); VERIFY(!(xpr.begin() > xpr.end())); VERIFY(!(xpr.begin() >= xpr.end())); VERIFY(xpr.cbegin() != xpr.end()); VERIFY(xpr.cbegin() < xpr.end()); VERIFY(xpr.cbegin() <= xpr.end()); VERIFY(!(xpr.cbegin() == xpr.end())); VERIFY(!(xpr.cbegin() > xpr.end())); VERIFY(!(xpr.cbegin() >= xpr.end())); VERIFY(xpr.begin() != xpr.cend()); VERIFY(xpr.begin() < xpr.cend()); VERIFY(xpr.begin() <= xpr.cend()); VERIFY(!(xpr.begin() == xpr.cend())); VERIFY(!(xpr.begin() > xpr.cend())); VERIFY(!(xpr.begin() >= xpr.cend())); } } template void test_stl_iterators(int rows = Rows, int cols = Cols) { typedef Matrix VectorType; typedef Matrix RowVectorType; typedef Matrix ColMatrixType; typedef Matrix RowMatrixType; VectorType v = VectorType::Random(rows); const VectorType& cv(v); ColMatrixType A = ColMatrixType::Random(rows, cols); const ColMatrixType& cA(A); RowMatrixType B = RowMatrixType::Random(rows, cols); using Eigen::placeholders::last; Index i, j; // Verify that iterators are default constructible (See bug #1900) { VERIFY(is_default_constructible_and_assignable(v.begin())); VERIFY(is_default_constructible_and_assignable(v.end())); VERIFY(is_default_constructible_and_assignable(cv.begin())); VERIFY(is_default_constructible_and_assignable(cv.end())); VERIFY(is_default_constructible_and_assignable(A.row(0).begin())); VERIFY(is_default_constructible_and_assignable(A.row(0).end())); VERIFY(is_default_constructible_and_assignable(cA.row(0).begin())); VERIFY(is_default_constructible_and_assignable(cA.row(0).end())); VERIFY(is_default_constructible_and_assignable(B.row(0).begin())); VERIFY(is_default_constructible_and_assignable(B.row(0).end())); } // Check we got a fast pointer-based iterator when expected { VERIFY(is_pointer_based_stl_iterator(v.begin())); VERIFY(is_pointer_based_stl_iterator(v.end())); VERIFY(is_pointer_based_stl_iterator(cv.begin())); VERIFY(is_pointer_based_stl_iterator(cv.end())); j = internal::random(0, A.cols() - 1); VERIFY(is_pointer_based_stl_iterator(A.col(j).begin())); VERIFY(is_pointer_based_stl_iterator(A.col(j).end())); VERIFY(is_pointer_based_stl_iterator(cA.col(j).begin())); VERIFY(is_pointer_based_stl_iterator(cA.col(j).end())); i = internal::random(0, A.rows() - 1); VERIFY(is_pointer_based_stl_iterator(A.row(i).begin())); VERIFY(is_pointer_based_stl_iterator(A.row(i).end())); VERIFY(is_pointer_based_stl_iterator(cA.row(i).begin())); VERIFY(is_pointer_based_stl_iterator(cA.row(i).end())); VERIFY(is_pointer_based_stl_iterator(A.reshaped().begin())); VERIFY(is_pointer_based_stl_iterator(A.reshaped().end())); VERIFY(is_pointer_based_stl_iterator(cA.reshaped().begin())); VERIFY(is_pointer_based_stl_iterator(cA.reshaped().end())); VERIFY(is_pointer_based_stl_iterator(B.template reshaped().begin())); VERIFY(is_pointer_based_stl_iterator(B.template reshaped().end())); VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped().begin())); VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped().end())); } { check_begin_end_for_loop(v); check_begin_end_for_loop(A.col(internal::random(0, A.cols() - 1))); check_begin_end_for_loop(A.row(internal::random(0, A.rows() - 1))); check_begin_end_for_loop(v + v); } // check swappable { using std::swap; // pointer-based { VectorType v_copy = v; auto a = v.begin(); auto b = v.end() - 1; swap(a, b); VERIFY_IS_EQUAL(v, v_copy); VERIFY_IS_EQUAL(*b, *v.begin()); VERIFY_IS_EQUAL(*b, v(0)); VERIFY_IS_EQUAL(*a, v.end()[-1]); VERIFY_IS_EQUAL(*a, v(last)); } // generic { RowMatrixType B_copy = B; auto Br = B.reshaped(); auto a = Br.begin(); auto b = Br.end() - 1; swap(a, b); VERIFY_IS_EQUAL(B, B_copy); VERIFY_IS_EQUAL(*b, *Br.begin()); VERIFY_IS_EQUAL(*b, Br(0)); VERIFY_IS_EQUAL(*a, Br.end()[-1]); VERIFY_IS_EQUAL(*a, Br(last)); } } // check non-const iterator with for-range loops { i = 0; for (auto x : v) { VERIFY_IS_EQUAL(x, v[i++]); } j = internal::random(0, A.cols() - 1); i = 0; for (auto x : A.col(j)) { VERIFY_IS_EQUAL(x, A(i++, j)); } i = 0; for (auto x : (v + A.col(j))) { VERIFY_IS_APPROX(x, v(i) + A(i, j)); ++i; } j = 0; i = internal::random(0, A.rows() - 1); for (auto x : A.row(i)) { VERIFY_IS_EQUAL(x, A(i, j++)); } i = 0; for (auto x : A.reshaped()) { VERIFY_IS_EQUAL(x, A(i++)); } } // same for const_iterator { i = 0; for (auto x : cv) { VERIFY_IS_EQUAL(x, v[i++]); } i = 0; for (auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x, A(i++)); } j = 0; i = internal::random(0, A.rows() - 1); for (auto x : cA.row(i)) { VERIFY_IS_EQUAL(x, A(i, j++)); } } // check reshaped() on row-major { i = 0; Matrix Bc = B; for (auto x : B.reshaped()) { VERIFY_IS_EQUAL(x, Bc(i++)); } } // check write access { VectorType w(v.size()); i = 0; for (auto& x : w) { x = v(i++); } VERIFY_IS_EQUAL(v, w); } // check for dangling pointers { // no dangling because pointer-based { j = internal::random(0, A.cols() - 1); auto it = A.col(j).begin(); for (i = 0; i < rows; ++i) { VERIFY_IS_EQUAL(it[i], A(i, j)); } } // no dangling because pointer-based { i = internal::random(0, A.rows() - 1); auto it = A.row(i).begin(); for (j = 0; j < cols; ++j) { VERIFY_IS_EQUAL(it[j], A(i, j)); } } { j = internal::random(0, A.cols() - 1); // this would produce a dangling pointer: // auto it = (A+2*A).col(j).begin(); // we need to name the temporary expression: auto tmp = (A + 2 * A).col(j); auto it = tmp.begin(); for (i = 0; i < rows; ++i) { VERIFY_IS_APPROX(it[i], 3 * A(i, j)); } } } { // check basic for loop on vector-wise iterators j = 0; for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { VERIFY_IS_APPROX(it->coeff(0), A(0, j)); VERIFY_IS_APPROX((*it).coeff(0), A(0, j)); } j = 0; for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) { (*it).coeffRef(0) = (*it).coeff(0); // compilation check it->coeffRef(0) = it->coeff(0); // compilation check VERIFY_IS_APPROX(it->coeff(0), A(0, j)); VERIFY_IS_APPROX((*it).coeff(0), A(0, j)); } // check valuetype gives us a copy j = 0; for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { typename decltype(it)::value_type tmp = *it; VERIFY_IS_NOT_EQUAL(tmp.data(), it->data()); VERIFY_IS_APPROX(tmp, A.col(j)); } } if (rows >= 3) { VERIFY_IS_EQUAL((v.begin() + rows / 2)[1], v(rows / 2 + 1)); VERIFY_IS_EQUAL((A.rowwise().begin() + rows / 2)[1], A.row(rows / 2 + 1)); } if (cols >= 3) { VERIFY_IS_EQUAL((A.colwise().begin() + cols / 2)[1], A.col(cols / 2 + 1)); } // check std::sort { // first check that is_sorted returns false when required if (rows >= 2) { v(1) = v(0) - Scalar(1); VERIFY(!is_sorted(std::begin(v), std::end(v))); } // on a vector { std::sort(v.begin(), v.end()); VERIFY(is_sorted(v.begin(), v.end())); VERIFY(!::is_sorted(make_reverse_iterator(v.end()), make_reverse_iterator(v.begin()))); } // on a column of a column-major matrix -> pointer-based iterator and default increment { j = internal::random(0, A.cols() - 1); // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators typename ColMatrixType::ColXpr Acol = A.col(j); std::sort(Acol.begin(), Acol.end()); VERIFY(is_sorted(Acol.cbegin(), Acol.cend())); A.setRandom(); std::sort(A.col(j).begin(), A.col(j).end()); VERIFY(is_sorted(A.col(j).cbegin(), A.col(j).cend())); A.setRandom(); } // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment { i = internal::random(0, A.rows() - 1); typename ColMatrixType::RowXpr Arow = A.row(i); VERIFY_IS_EQUAL(std::distance(Arow.begin(), Arow.end()), cols); std::sort(Arow.begin(), Arow.end()); VERIFY(is_sorted(Arow.cbegin(), Arow.cend())); A.setRandom(); std::sort(A.row(i).begin(), A.row(i).end()); VERIFY(is_sorted(A.row(i).cbegin(), A.row(i).cend())); A.setRandom(); } // with a generic iterator { Reshaped B1 = B.reshaped(); std::sort(B1.begin(), B1.end()); VERIFY(is_sorted(B1.cbegin(), B1.cend())); B.setRandom(); // assertion because nested expressions are different // std::sort(B.reshaped().begin(),B.reshaped().end()); // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); // B.setRandom(); } } // check with partial_sum { j = internal::random(0, A.cols() - 1); typename ColMatrixType::ColXpr Acol = A.col(j); std::partial_sum(Acol.begin(), Acol.end(), v.begin()); VERIFY_IS_APPROX(v(seq(1, last)), v(seq(0, last - 1)) + Acol(seq(1, last))); // inplace std::partial_sum(Acol.begin(), Acol.end(), Acol.begin()); VERIFY_IS_APPROX(v, Acol); } // stress random access as required by std::nth_element if (rows >= 3) { v.setRandom(); VectorType v1 = v; std::sort(v1.begin(), v1.end()); std::nth_element(v.begin(), v.begin() + rows / 2, v.end()); VERIFY_IS_APPROX(v1(rows / 2), v(rows / 2)); v.setRandom(); v1 = v; std::sort(v1.begin() + rows / 2, v1.end()); std::nth_element(v.begin() + rows / 2, v.begin() + rows / 4, v.end()); VERIFY_IS_APPROX(v1(rows / 4), v(rows / 4)); } // check rows/cols iterators with range-for loops { j = 0; for (auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; } j = 0; for (auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; } j = 0; for (auto c : B.colwise()) { i = 0; for (auto& x : c) { VERIFY_IS_EQUAL(x, B(i, j)); x = A(i, j); ++i; } ++j; } VERIFY_IS_APPROX(A, B); B.setRandom(); i = 0; for (auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; } i = 0; for (auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; } } // check rows/cols iterators with STL algorithms { RowVectorType row = RowVectorType::Random(cols); VectorType col = VectorType::Random(rows); // Prevent overflows for integer types. if (Eigen::NumTraits::IsInteger) { Scalar kMaxVal = Scalar(1000); row.array() = row.array() - kMaxVal * (row.array() / kMaxVal); col.array() = col.array() - kMaxVal * (col.array() / kMaxVal); } A.rowwise() = row; VERIFY(std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(), row.squaredNorm()); })); VERIFY(std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(), row.squaredNorm()); })); A.colwise() = col; VERIFY(std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(), col.squaredNorm()); })); VERIFY(std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(), col.squaredNorm()); })); VERIFY(std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(), col.squaredNorm()); })); VERIFY(std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(), col.squaredNorm()); })); i = internal::random(0, A.rows() - 1); A.setRandom(); A.row(i).setZero(); VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().begin(), i); VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().rbegin(), (A.rows() - 1) - i); j = internal::random(0, A.cols() - 1); A.setRandom(); A.col(j).setZero(); VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().begin(), j); VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().rbegin(), (A.cols() - 1) - j); } { using VecOp = VectorwiseOp; STATIC_CHECK((internal::is_same().cbegin())>::value)); STATIC_CHECK((internal::is_same().cend())>::value)); STATIC_CHECK( (internal::is_same()))>::value)); STATIC_CHECK((internal::is_same()))>::value)); } } // When the compiler sees expression IsContainerTest(0), if C is an // STL-style container class, the first overload of IsContainerTest // will be viable (since both C::iterator* and C::const_iterator* are // valid types and NULL can be implicitly converted to them). It will // be picked over the second overload as 'int' is a perfect match for // the type of argument 0. If C::iterator or C::const_iterator is not // a valid type, the first overload is not viable, and the second // overload will be picked. template ().begin()), class = decltype(::std::declval().end()), class = decltype(++::std::declval()), class = decltype(*::std::declval()), class = typename C::const_iterator> bool IsContainerType(int /* dummy */) { return true; } template bool IsContainerType(long /* dummy */) { return false; } template void test_stl_container_detection(int rows = Rows, int cols = Cols) { typedef Matrix VectorType; typedef Matrix ColMatrixType; typedef Matrix RowMatrixType; ColMatrixType A = ColMatrixType::Random(rows, cols); RowMatrixType B = RowMatrixType::Random(rows, cols); Index i = 1; using ColMatrixColType = decltype(A.col(i)); using ColMatrixRowType = decltype(A.row(i)); using RowMatrixColType = decltype(B.col(i)); using RowMatrixRowType = decltype(B.row(i)); // Vector and matrix col/row are valid Stl-style container. VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); VERIFY_IS_EQUAL(IsContainerType(0), true); // But the matrix itself is not a valid Stl-style container. VERIFY_IS_EQUAL(IsContainerType(0), rows == 1 || cols == 1); VERIFY_IS_EQUAL(IsContainerType(0), rows == 1 || cols == 1); } EIGEN_DECLARE_TEST(stl_iterators) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1((test_stl_iterators())); CALL_SUBTEST_1((test_stl_iterators())); CALL_SUBTEST_1( (test_stl_iterators(internal::random(5, 10), internal::random(5, 10)))); CALL_SUBTEST_1( (test_stl_iterators(internal::random(10, 200), internal::random(10, 200)))); } CALL_SUBTEST_1((test_stl_container_detection())); CALL_SUBTEST_1((test_stl_container_detection())); }