// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_GENERIC_PACKET_MATH_H #define EIGEN_GENERIC_PACKET_MATH_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { /** \internal * \file GenericPacketMath.h * * Default implementation for types not supported by the vectorization. * In practice these functions are provided to make easier the writing * of generic vectorized code. */ #ifndef EIGEN_DEBUG_ALIGNED_LOAD #define EIGEN_DEBUG_ALIGNED_LOAD #endif #ifndef EIGEN_DEBUG_UNALIGNED_LOAD #define EIGEN_DEBUG_UNALIGNED_LOAD #endif #ifndef EIGEN_DEBUG_ALIGNED_STORE #define EIGEN_DEBUG_ALIGNED_STORE #endif #ifndef EIGEN_DEBUG_UNALIGNED_STORE #define EIGEN_DEBUG_UNALIGNED_STORE #endif struct default_packet_traits { enum { HasAdd = 1, HasSub = 1, HasShift = 1, HasMul = 1, HasNegate = 1, HasAbs = 1, HasArg = 0, HasAbs2 = 1, HasAbsDiff = 0, HasMin = 1, HasMax = 1, HasConj = 1, HasSetLinear = 1, HasSign = 1, HasBlend = 0, // This flag is used to indicate whether packet comparison is supported. // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true. HasCmp = 0, HasDiv = 0, HasReciprocal = 0, HasSqrt = 0, HasRsqrt = 0, HasExp = 0, HasExpm1 = 0, HasLog = 0, HasLog1p = 0, HasLog10 = 0, HasPow = 0, HasSin = 0, HasCos = 0, HasTan = 0, HasASin = 0, HasACos = 0, HasATan = 0, HasATanh = 0, HasSinh = 0, HasCosh = 0, HasTanh = 0, HasLGamma = 0, HasDiGamma = 0, HasZeta = 0, HasPolygamma = 0, HasErf = 0, HasErfc = 0, HasNdtri = 0, HasBessel = 0, HasIGamma = 0, HasIGammaDerA = 0, HasGammaSampleDerAlpha = 0, HasIGammac = 0, HasBetaInc = 0, HasRound = 0, HasRint = 0, HasFloor = 0, HasCeil = 0 }; }; template struct packet_traits : default_packet_traits { typedef T type; typedef T half; enum { Vectorizable = 0, size = 1, AlignedOnScalar = 0, }; enum { HasAdd = 0, HasSub = 0, HasMul = 0, HasNegate = 0, HasAbs = 0, HasAbs2 = 0, HasMin = 0, HasMax = 0, HasConj = 0, HasSetLinear = 0 }; }; template struct packet_traits : packet_traits {}; template struct unpacket_traits { typedef T type; typedef T half; enum { size = 1, alignment = 1, vectorizable = false, masked_load_available = false, masked_store_available = false }; }; template struct unpacket_traits : unpacket_traits {}; /** \internal A convenience utility for determining if the type is a scalar. * This is used to enable some generic packet implementations. */ template struct is_scalar { using Scalar = typename unpacket_traits::type; enum { value = internal::is_same::value }; }; // automatically and succinctly define combinations of pcast when // 1) the packets are the same type, or // 2) the packets differ only in sign. // In both of these cases, preinterpret (bit_cast) is equivalent to pcast (static_cast) template ::value && is_scalar::value> struct is_degenerate_helper : is_same {}; template <> struct is_degenerate_helper : std::true_type {}; template <> struct is_degenerate_helper : std::true_type {}; template <> struct is_degenerate_helper : std::true_type {}; template <> struct is_degenerate_helper : std::true_type {}; template struct is_degenerate_helper { using SrcScalar = typename unpacket_traits::type; static constexpr int SrcSize = unpacket_traits::size; using TgtScalar = typename unpacket_traits::type; static constexpr int TgtSize = unpacket_traits::size; static constexpr bool value = is_degenerate_helper::value && (SrcSize == TgtSize); }; // is_degenerate::value == is_degenerate::value template struct is_degenerate { static constexpr bool value = is_degenerate_helper::value || is_degenerate_helper::value; }; template struct is_half { using Scalar = typename unpacket_traits::type; static constexpr int Size = unpacket_traits::size; using DefaultPacket = typename packet_traits::type; static constexpr int DefaultSize = unpacket_traits::size; static constexpr bool value = Size < DefaultSize; }; template struct type_casting_traits { enum { VectorizedCast = is_degenerate::value && packet_traits::Vectorizable && packet_traits::Vectorizable, SrcCoeffRatio = 1, TgtCoeffRatio = 1 }; }; // provides a succint template to define vectorized casting traits with respect to the largest accessible packet types template struct vectorized_type_casting_traits { enum : int { DefaultSrcPacketSize = packet_traits::size, DefaultTgtPacketSize = packet_traits::size, VectorizedCast = 1, SrcCoeffRatio = plain_enum_max(DefaultTgtPacketSize / DefaultSrcPacketSize, 1), TgtCoeffRatio = plain_enum_max(DefaultSrcPacketSize / DefaultTgtPacketSize, 1) }; }; /** \internal Wrapper to ensure that multiple packet types can map to the same same underlying vector type. */ template struct eigen_packet_wrapper { EIGEN_ALWAYS_INLINE operator T&() { return m_val; } EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; } EIGEN_ALWAYS_INLINE eigen_packet_wrapper() = default; EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T& v) : m_val(v) {} EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T& v) { m_val = v; return *this; } T m_val; }; template ::value> struct preinterpret_generic; template struct preinterpret_generic { // the packets are not the same, attempt scalar bit_cast static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Target run(const Packet& a) { return numext::bit_cast(a); } }; template struct preinterpret_generic { // the packets are the same type: do nothing static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; } }; /** \internal \returns reinterpret_cast(a) */ template EIGEN_DEVICE_FUNC inline Target preinterpret(const Packet& a) { return preinterpret_generic::run(a); } template ::value, bool TgtIsHalf = is_half::value> struct pcast_generic; template struct pcast_generic { // the packets are not degenerate: attempt scalar static_cast static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { return cast_impl::run(a); } }; template struct pcast_generic { // the packets are the same: do nothing static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& a) { return a; } }; template struct pcast_generic { // the packets are degenerate: preinterpret is equivalent to pcast static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { return preinterpret(a); } }; /** \internal \returns static_cast(a) (coeff-wise) */ template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a) { return pcast_generic::run(a); } template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b) { return pcast_generic::run(a, b); } template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, const SrcPacket& d) { return pcast_generic::run(a, b, c, d); } template EIGEN_DEVICE_FUNC inline TgtPacket pcast(const SrcPacket& a, const SrcPacket& b, const SrcPacket& c, const SrcPacket& d, const SrcPacket& e, const SrcPacket& f, const SrcPacket& g, const SrcPacket& h) { return pcast_generic::run(a, b, c, d, e, f, g, h); } template struct pcast_generic { // TgtPacket is a half packet of some other type // perform cast and truncate result using DefaultTgtPacket = typename is_half::DefaultPacket; static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TgtPacket run(const SrcPacket& a) { return preinterpret(pcast(a)); } }; /** \internal \returns a + b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet padd(const Packet& a, const Packet& b) { return a + b; } // Avoid compiler warning for boolean algebra. template <> EIGEN_DEVICE_FUNC inline bool padd(const bool& a, const bool& b) { return a || b; } /** \internal \returns a packet version of \a *from, (un-aligned masked add) * There is no generic implementation. We only have implementations for specialized * cases. Generic case should not be called. */ template EIGEN_DEVICE_FUNC inline std::enable_if_t::masked_fpops_available, Packet> padd( const Packet& a, const Packet& b, typename unpacket_traits::mask_t umask); /** \internal \returns a - b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet psub(const Packet& a, const Packet& b) { return a - b; } /** \internal \returns -a (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pnegate(const Packet& a) { return -a; } template <> EIGEN_DEVICE_FUNC inline bool pnegate(const bool& a) { return !a; } /** \internal \returns conj(a) (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pconj(const Packet& a) { return numext::conj(a); } /** \internal \returns a * b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pmul(const Packet& a, const Packet& b) { return a * b; } // Avoid compiler warning for boolean algebra. template <> EIGEN_DEVICE_FUNC inline bool pmul(const bool& a, const bool& b) { return a && b; } /** \internal \returns a / b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pdiv(const Packet& a, const Packet& b) { return a / b; } // In the generic case, memset to all one bits. template struct ptrue_impl { static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) { Packet b; memset(static_cast(&b), 0xff, sizeof(Packet)); return b; } }; // For booleans, we can only directly set a valid `bool` value to avoid UB. template <> struct ptrue_impl { static EIGEN_DEVICE_FUNC inline bool run(const bool& /*a*/) { return true; } }; // For non-trivial scalars, set to Scalar(1) (i.e. a non-zero value). // Although this is technically not a valid bitmask, the scalar path for pselect // uses a comparison to zero, so this should still work in most cases. We don't // have another option, since the scalar type requires initialization. template struct ptrue_impl::value && NumTraits::RequireInitialization>> { static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) { return T(1); } }; /** \internal \returns one bits. */ template EIGEN_DEVICE_FUNC inline Packet ptrue(const Packet& a) { return ptrue_impl::run(a); } // In the general case, memset to zero. template struct pzero_impl { static EIGEN_DEVICE_FUNC inline Packet run(const Packet& /*a*/) { Packet b; memset(static_cast(&b), 0x00, sizeof(Packet)); return b; } }; // For scalars, explicitly set to Scalar(0), since the underlying representation // for zero may not consist of all-zero bits. template struct pzero_impl::value>> { static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) { return T(0); } }; /** \internal \returns packet of zeros */ template EIGEN_DEVICE_FUNC inline Packet pzero(const Packet& a) { return pzero_impl::run(a); } /** \internal \returns a <= b as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_le(const Packet& a, const Packet& b) { return a <= b ? ptrue(a) : pzero(a); } /** \internal \returns a < b as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_lt(const Packet& a, const Packet& b) { return a < b ? ptrue(a) : pzero(a); } /** \internal \returns a == b as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_eq(const Packet& a, const Packet& b) { return a == b ? ptrue(a) : pzero(a); } /** \internal \returns a < b or a==NaN or b==NaN as a bit mask */ template EIGEN_DEVICE_FUNC inline Packet pcmp_lt_or_nan(const Packet& a, const Packet& b) { return a >= b ? pzero(a) : ptrue(a); } template struct bit_and { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a & b; } }; template struct bit_or { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a | b; } }; template struct bit_xor { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a, const T& b) const { return a ^ b; } }; template struct bit_not { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE T operator()(const T& a) const { return ~a; } }; template <> struct bit_and { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { return a && b; } }; template <> struct bit_or { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { return a || b; } }; template <> struct bit_xor { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a, const bool& b) const { return a != b; } }; template <> struct bit_not { EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR EIGEN_ALWAYS_INLINE bool operator()(const bool& a) const { return !a; } }; // Use operators &, |, ^, ~. template struct operator_bitwise_helper { EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { return bit_and()(a, b); } EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return bit_or()(a, b); } EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { return bit_xor()(a, b); } EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return bit_not()(a); } }; // Apply binary operations byte-by-byte template struct bytewise_bitwise_helper { EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) { return binary(a, b, bit_and()); } EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) { return binary(a, b, bit_or()); } EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) { return binary(a, b, bit_xor()); } EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) { return unary(a, bit_not()); } private: template EIGEN_DEVICE_FUNC static inline T unary(const T& a, Op op) { const unsigned char* a_ptr = reinterpret_cast(&a); T c; unsigned char* c_ptr = reinterpret_cast(&c); for (size_t i = 0; i < sizeof(T); ++i) { *c_ptr++ = op(*a_ptr++); } return c; } template EIGEN_DEVICE_FUNC static inline T binary(const T& a, const T& b, Op op) { const unsigned char* a_ptr = reinterpret_cast(&a); const unsigned char* b_ptr = reinterpret_cast(&b); T c; unsigned char* c_ptr = reinterpret_cast(&c); for (size_t i = 0; i < sizeof(T); ++i) { *c_ptr++ = op(*a_ptr++, *b_ptr++); } return c; } }; // In the general case, use byte-by-byte manipulation. template struct bitwise_helper : public bytewise_bitwise_helper {}; // For integers or non-trivial scalars, use binary operators. template struct bitwise_helper::value && (NumTraits::IsInteger || NumTraits::RequireInitialization)>> : public operator_bitwise_helper {}; /** \internal \returns the bitwise and of \a a and \a b */ template EIGEN_DEVICE_FUNC inline Packet pand(const Packet& a, const Packet& b) { return bitwise_helper::bitwise_and(a, b); } /** \internal \returns the bitwise or of \a a and \a b */ template EIGEN_DEVICE_FUNC inline Packet por(const Packet& a, const Packet& b) { return bitwise_helper::bitwise_or(a, b); } /** \internal \returns the bitwise xor of \a a and \a b */ template EIGEN_DEVICE_FUNC inline Packet pxor(const Packet& a, const Packet& b) { return bitwise_helper::bitwise_xor(a, b); } /** \internal \returns the bitwise not of \a a */ template EIGEN_DEVICE_FUNC inline Packet pnot(const Packet& a) { return bitwise_helper::bitwise_not(a); } /** \internal \returns the bitwise and of \a a and not \a b */ template EIGEN_DEVICE_FUNC inline Packet pandnot(const Packet& a, const Packet& b) { return pand(a, pnot(b)); } /** \internal \returns isnan(a) */ template EIGEN_DEVICE_FUNC inline Packet pisnan(const Packet& a) { return pandnot(ptrue(a), pcmp_eq(a, a)); } // In the general case, use bitwise select. template struct pselect_impl { static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) { return por(pand(a, mask), pandnot(b, mask)); } }; // For scalars, use ternary select. template struct pselect_impl::value>> { static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) { return numext::equal_strict(mask, Packet(0)) ? b : a; } }; /** \internal \returns \a or \b for each field in packet according to \mask */ template EIGEN_DEVICE_FUNC inline Packet pselect(const Packet& mask, const Packet& a, const Packet& b) { return pselect_impl::run(mask, a, b); } template <> EIGEN_DEVICE_FUNC inline bool pselect(const bool& cond, const bool& a, const bool& b) { return cond ? a : b; } /** \internal \returns the min or of \a a and \a b (coeff-wise) If either \a a or \a b are NaN, the result is implementation defined. */ template struct pminmax_impl { template static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { return op(a, b); } }; /** \internal \returns the min or max of \a a and \a b (coeff-wise) If either \a a or \a b are NaN, NaN is returned. */ template <> struct pminmax_impl { template static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { Packet not_nan_mask_a = pcmp_eq(a, a); Packet not_nan_mask_b = pcmp_eq(b, b); return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), b), a); } }; /** \internal \returns the min or max of \a a and \a b (coeff-wise) If both \a a and \a b are NaN, NaN is returned. Equivalent to std::fmin(a, b). */ template <> struct pminmax_impl { template static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a, const Packet& b, Op op) { Packet not_nan_mask_a = pcmp_eq(a, a); Packet not_nan_mask_b = pcmp_eq(b, b); return pselect(not_nan_mask_a, pselect(not_nan_mask_b, op(a, b), a), b); } }; #define EIGEN_BINARY_OP_NAN_PROPAGATION(Type, Func) [](const Type& a, const Type& b) { return Func(a, b); } /** \internal \returns the min of \a a and \a b (coeff-wise). If \a a or \b b is NaN, the return value is implementation defined. */ template EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { return numext::mini(a, b); } /** \internal \returns the min of \a a and \a b (coeff-wise). NaNPropagation determines the NaN propagation semantics. */ template EIGEN_DEVICE_FUNC inline Packet pmin(const Packet& a, const Packet& b) { return pminmax_impl::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmin))); } /** \internal \returns the max of \a a and \a b (coeff-wise) If \a a or \b b is NaN, the return value is implementation defined. */ template EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { return numext::maxi(a, b); } /** \internal \returns the max of \a a and \a b (coeff-wise). NaNPropagation determines the NaN propagation semantics. */ template EIGEN_DEVICE_FUNC inline Packet pmax(const Packet& a, const Packet& b) { return pminmax_impl::run(a, b, EIGEN_BINARY_OP_NAN_PROPAGATION(Packet, (pmax))); } /** \internal \returns the absolute value of \a a */ template EIGEN_DEVICE_FUNC inline Packet pabs(const Packet& a) { return numext::abs(a); } template <> EIGEN_DEVICE_FUNC inline unsigned int pabs(const unsigned int& a) { return a; } template <> EIGEN_DEVICE_FUNC inline unsigned long pabs(const unsigned long& a) { return a; } template <> EIGEN_DEVICE_FUNC inline unsigned long long pabs(const unsigned long long& a) { return a; } /** \internal \returns the addsub value of \a a,b */ template EIGEN_DEVICE_FUNC inline Packet paddsub(const Packet& a, const Packet& b) { return pselect(peven_mask(a), padd(a, b), psub(a, b)); } /** \internal \returns the phase angle of \a a */ template EIGEN_DEVICE_FUNC inline Packet parg(const Packet& a) { using numext::arg; return arg(a); } /** \internal \returns \a a arithmetically shifted by N bits to the right */ template EIGEN_DEVICE_FUNC inline int parithmetic_shift_right(const int& a) { return a >> N; } template EIGEN_DEVICE_FUNC inline long int parithmetic_shift_right(const long int& a) { return a >> N; } /** \internal \returns \a a logically shifted by N bits to the right */ template EIGEN_DEVICE_FUNC inline int plogical_shift_right(const int& a) { return static_cast(static_cast(a) >> N); } template EIGEN_DEVICE_FUNC inline long int plogical_shift_right(const long int& a) { return static_cast(static_cast(a) >> N); } /** \internal \returns \a a shifted by N bits to the left */ template EIGEN_DEVICE_FUNC inline int plogical_shift_left(const int& a) { return a << N; } template EIGEN_DEVICE_FUNC inline long int plogical_shift_left(const long int& a) { return a << N; } /** \internal \returns the significant and exponent of the underlying floating point numbers * See https://en.cppreference.com/w/cpp/numeric/math/frexp */ template EIGEN_DEVICE_FUNC inline Packet pfrexp(const Packet& a, Packet& exponent) { int exp; EIGEN_USING_STD(frexp); Packet result = static_cast(frexp(a, &exp)); exponent = static_cast(exp); return result; } /** \internal \returns a * 2^((int)exponent) * See https://en.cppreference.com/w/cpp/numeric/math/ldexp */ template EIGEN_DEVICE_FUNC inline Packet pldexp(const Packet& a, const Packet& exponent) { EIGEN_USING_STD(ldexp) return static_cast(ldexp(a, static_cast(exponent))); } /** \internal \returns the min of \a a and \a b (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pabsdiff(const Packet& a, const Packet& b) { return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); } /** \internal \returns a packet version of \a *from, from must be properly aligned */ template EIGEN_DEVICE_FUNC inline Packet pload(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns n elements of a packet version of \a *from, from must be properly aligned * offset indicates the starting element in which to load and * offset + n <= unpacket_traits::size * All elements before offset and after the last element loaded will initialized with zero */ template EIGEN_DEVICE_FUNC inline Packet pload_partial(const typename unpacket_traits::type* from, const Index n, const Index offset = 0) { const Index packet_size = unpacket_traits::size; eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); typedef typename unpacket_traits::type Scalar; EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; for (Index i = offset; i < numext::mini(n + offset, packet_size); i++) { elements[i] = from[i - offset]; } return pload(elements); } /** \internal \returns a packet version of \a *from, (un-aligned load) */ template EIGEN_DEVICE_FUNC inline Packet ploadu(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns n elements of a packet version of \a *from, (un-aligned load) * All elements after the last element loaded will initialized with zero */ template EIGEN_DEVICE_FUNC inline Packet ploadu_partial(const typename unpacket_traits::type* from, const Index n, const Index offset = 0) { const Index packet_size = unpacket_traits::size; eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet"); typedef typename unpacket_traits::type Scalar; EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; for (Index i = offset; i < numext::mini(n + offset, packet_size); i++) { elements[i] = from[i - offset]; } return pload(elements); } /** \internal \returns a packet version of \a *from, (un-aligned masked load) * There is no generic implementation. We only have implementations for specialized * cases. Generic case should not be called. */ template EIGEN_DEVICE_FUNC inline std::enable_if_t::masked_load_available, Packet> ploadu( const typename unpacket_traits::type* from, typename unpacket_traits::mask_t umask); /** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ template EIGEN_DEVICE_FUNC inline Packet pset1(const typename unpacket_traits::type& a) { return a; } /** \internal \returns a packet with constant coefficients set from bits */ template EIGEN_DEVICE_FUNC inline Packet pset1frombits(BitsType a); /** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */ template EIGEN_DEVICE_FUNC inline Packet pload1(const typename unpacket_traits::type* a) { return pset1(*a); } /** \internal \returns a packet with elements of \a *from duplicated. * For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and * duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]} * Currently, this function is only used for scalar * complex products. */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet ploaddup(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet with elements of \a *from quadrupled. * For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and * replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]} * Currently, this function is only used in matrix products. * For packet-size smaller or equal to 4, this function is equivalent to pload1 */ template EIGEN_DEVICE_FUNC inline Packet ploadquad(const typename unpacket_traits::type* from) { return pload1(from); } /** \internal equivalent to * \code * a0 = pload1(a+0); * a1 = pload1(a+1); * a2 = pload1(a+2); * a3 = pload1(a+3); * \endcode * \sa pset1, pload1, ploaddup, pbroadcast2 */ template EIGEN_DEVICE_FUNC inline void pbroadcast4(const typename unpacket_traits::type* a, Packet& a0, Packet& a1, Packet& a2, Packet& a3) { a0 = pload1(a + 0); a1 = pload1(a + 1); a2 = pload1(a + 2); a3 = pload1(a + 3); } /** \internal equivalent to * \code * a0 = pload1(a+0); * a1 = pload1(a+1); * \endcode * \sa pset1, pload1, ploaddup, pbroadcast4 */ template EIGEN_DEVICE_FUNC inline void pbroadcast2(const typename unpacket_traits::type* a, Packet& a0, Packet& a1) { a0 = pload1(a + 0); a1 = pload1(a + 1); } /** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet plset(const typename unpacket_traits::type& a) { return a; } /** \internal \returns a packet with constant coefficients \a a, e.g.: (x, 0, x, 0), where x is the value of all 1-bits. */ template EIGEN_DEVICE_FUNC inline Packet peven_mask(const Packet& /*a*/) { typedef typename unpacket_traits::type Scalar; const size_t n = unpacket_traits::size; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; for (size_t i = 0; i < n; ++i) { memset(elements + i, ((i & 1) == 0 ? 0xff : 0), sizeof(Scalar)); } return ploadu(elements); } /** \internal copy the packet \a from to \a *to, \a to must be properly aligned */ template EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from) { (*to) = from; } /** \internal copy n elements of the packet \a from to \a *to, \a to must be properly aligned * offset indicates the starting element in which to store and * offset + n <= unpacket_traits::size */ template EIGEN_DEVICE_FUNC inline void pstore_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { const Index packet_size = unpacket_traits::size; eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); EIGEN_ALIGN_MAX Scalar elements[packet_size]; pstore(elements, from); for (Index i = 0; i < numext::mini(n, packet_size - offset); i++) { to[i] = elements[i + offset]; } } /** \internal copy the packet \a from to \a *to, (un-aligned store) */ template EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from) { (*to) = from; } /** \internal copy n elements of the packet \a from to \a *to, (un-aligned store) */ template EIGEN_DEVICE_FUNC inline void pstoreu_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { const Index packet_size = unpacket_traits::size; eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet"); EIGEN_ALIGN_MAX Scalar elements[packet_size]; pstore(elements, from); for (Index i = 0; i < numext::mini(n, packet_size - offset); i++) { to[i] = elements[i + offset]; } } /** \internal copy the packet \a from to \a *to, (un-aligned store with a mask) * There is no generic implementation. We only have implementations for specialized * cases. Generic case should not be called. */ template EIGEN_DEVICE_FUNC inline std::enable_if_t::masked_store_available, void> pstoreu( Scalar* to, const Packet& from, typename unpacket_traits::mask_t umask); template EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/) { return ploadu(from); } template EIGEN_DEVICE_FUNC inline Packet pgather_partial(const Scalar* from, Index stride, const Index n) { const Index packet_size = unpacket_traits::size; EIGEN_ALIGN_MAX Scalar elements[packet_size] = {Scalar(0)}; for (Index i = 0; i < numext::mini(n, packet_size); i++) { elements[i] = from[i * stride]; } return pload(elements); } template EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/) { pstore(to, from); } template EIGEN_DEVICE_FUNC inline void pscatter_partial(Scalar* to, const Packet& from, Index stride, const Index n) { const Index packet_size = unpacket_traits::size; EIGEN_ALIGN_MAX Scalar elements[packet_size]; pstore(elements, from); for (Index i = 0; i < numext::mini(n, packet_size); i++) { to[i * stride] = elements[i]; } } /** \internal tries to do cache prefetching of \a addr */ template EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr) { #if defined(EIGEN_HIP_DEVICE_COMPILE) // do nothing #elif defined(EIGEN_CUDA_ARCH) #if defined(__LP64__) || EIGEN_OS_WIN64 // 64-bit pointer operand constraint for inlined asm asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr)); #else // 32-bit pointer operand constraint for inlined asm asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr)); #endif #elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) __builtin_prefetch(addr); #endif } /** \internal \returns the reversed elements of \a a*/ template EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a) { return a; } /** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ template EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a) { return Packet(numext::imag(a), numext::real(a)); } /************************** * Special math functions ***************************/ /** \internal \returns the sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psin(const Packet& a) { EIGEN_USING_STD(sin); return sin(a); } /** \internal \returns the cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcos(const Packet& a) { EIGEN_USING_STD(cos); return cos(a); } /** \internal \returns the tan of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptan(const Packet& a) { EIGEN_USING_STD(tan); return tan(a); } /** \internal \returns the arc sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pasin(const Packet& a) { EIGEN_USING_STD(asin); return asin(a); } /** \internal \returns the arc cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pacos(const Packet& a) { EIGEN_USING_STD(acos); return acos(a); } /** \internal \returns the hyperbolic sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psinh(const Packet& a) { EIGEN_USING_STD(sinh); return sinh(a); } /** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcosh(const Packet& a) { EIGEN_USING_STD(cosh); return cosh(a); } /** \internal \returns the arc tangent of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patan(const Packet& a) { EIGEN_USING_STD(atan); return atan(a); } /** \internal \returns the hyperbolic tan of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptanh(const Packet& a) { EIGEN_USING_STD(tanh); return tanh(a); } /** \internal \returns the arc tangent of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet patanh(const Packet& a) { EIGEN_USING_STD(atanh); return atanh(a); } /** \internal \returns the exp of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet& a) { EIGEN_USING_STD(exp); return exp(a); } /** \internal \returns the expm1 of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexpm1(const Packet& a) { return numext::expm1(a); } /** \internal \returns the log of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet& a) { EIGEN_USING_STD(log); return log(a); } /** \internal \returns the log1p of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog1p(const Packet& a) { return numext::log1p(a); } /** \internal \returns the log10 of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog10(const Packet& a) { EIGEN_USING_STD(log10); return log10(a); } /** \internal \returns the log10 of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog2(const Packet& a) { typedef typename internal::unpacket_traits::type Scalar; return pmul(pset1(Scalar(EIGEN_LOG2E)), plog(a)); } /** \internal \returns the square-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psqrt(const Packet& a) { return numext::sqrt(a); } /** \internal \returns the cube-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcbrt(const Packet& a) { return numext::cbrt(a); } /** \internal \returns the rounded value of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pround(const Packet& a) { using numext::round; return round(a); } /** \internal \returns the floor of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pfloor(const Packet& a) { using numext::floor; return floor(a); } /** \internal \returns the rounded value of \a a (coeff-wise) with current * rounding mode */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet print(const Packet& a) { using numext::rint; return rint(a); } /** \internal \returns the ceil of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); } template struct psign_impl { static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) { return numext::sign(a); } }; /** \internal \returns the sign of \a a (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet psign(const Packet& a) { return psign_impl::run(a); } template <> EIGEN_DEVICE_FUNC inline bool psign(const bool& a) { return a; } /** \internal \returns the first element of a packet */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type pfirst(const Packet& a) { return a; } /** \internal \returns the sum of the elements of upper and lower half of \a a if \a a is larger than 4. * For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7} * For packet-size smaller or equal to 4, this boils down to a noop. */ template EIGEN_DEVICE_FUNC inline std::conditional_t<(unpacket_traits::size % 8) == 0, typename unpacket_traits::half, Packet> predux_half_dowto4(const Packet& a) { return a; } // Slow generic implementation of Packet reduction. template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_helper(const Packet& a, Op op) { typedef typename unpacket_traits::type Scalar; const size_t n = unpacket_traits::size; EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) Scalar elements[n]; pstoreu(elements, a); for (size_t k = n / 2; k > 0; k /= 2) { for (size_t i = 0; i < k; ++i) { elements[i] = op(elements[i], elements[i + k]); } } return elements[0]; } /** \internal \returns the sum of the elements of \a a*/ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux(const Packet& a) { return a; } /** \internal \returns the product of the elements of \a a */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_mul(const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul))); } /** \internal \returns the min of the elements of \a a */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_min(const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin))); } template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_min(const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin))); } /** \internal \returns the min of the elements of \a a */ template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_max(const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax))); } template EIGEN_DEVICE_FUNC inline typename unpacket_traits::type predux_max(const Packet& a) { typedef typename unpacket_traits::type Scalar; return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax))); } #undef EIGEN_BINARY_OP_NAN_PROPAGATION /** \internal \returns true if all coeffs of \a a means "true" * It is supposed to be called on values returned by pcmp_*. */ // not needed yet // template EIGEN_DEVICE_FUNC inline bool predux_all(const Packet& a) // { return bool(a); } /** \internal \returns true if any coeffs of \a a means "true" * It is supposed to be called on values returned by pcmp_*. */ template EIGEN_DEVICE_FUNC inline bool predux_any(const Packet& a) { // Dirty but generic implementation where "true" is assumed to be non 0 and all the sames. // It is expected that "true" is either: // - Scalar(1) // - bits full of ones (NaN for floats), // - or first bit equals to 1 (1 for ints, smallest denormal for floats). // For all these cases, taking the sum is just fine, and this boils down to a no-op for scalars. typedef typename unpacket_traits::type Scalar; return numext::not_equal_strict(predux(a), Scalar(0)); } /*************************************************************************** * The following functions might not have to be overwritten for vectorized types ***************************************************************************/ // FMA instructions. /** \internal \returns a * b + c (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b, const Packet& c) { return padd(pmul(a, b), c); } /** \internal \returns a * b - c (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pmsub(const Packet& a, const Packet& b, const Packet& c) { return psub(pmul(a, b), c); } /** \internal \returns -(a * b) + c (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pnmadd(const Packet& a, const Packet& b, const Packet& c) { return padd(pnegate(pmul(a, b)), c); } /** \internal \returns -(a * b) - c (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet pnmsub(const Packet& a, const Packet& b, const Packet& c) { return psub(pnegate(pmul(a, b)), c); } /** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */ // NOTE: this function must really be templated on the packet type (think about different packet types for the same // scalar type) template inline void pstore1(typename unpacket_traits::type* to, const typename unpacket_traits::type& a) { pstore(to, pset1(a)); } /** \internal \returns a packet version of \a *from. * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits::type* from) { if (Alignment >= unpacket_traits::alignment) return pload(from); else return ploadu(from); } /** \internal \returns n elements of a packet version of \a *from. * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_partial(const typename unpacket_traits::type* from, const Index n, const Index offset = 0) { if (Alignment >= unpacket_traits::alignment) return pload_partial(from, n, offset); else return ploadu_partial(from, n, offset); } /** \internal copy the packet \a from to \a *to. * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from) { if (Alignment >= unpacket_traits::alignment) pstore(to, from); else pstoreu(to, from); } /** \internal copy n elements of the packet \a from to \a *to. * The pointer \a from must be aligned on a \a Alignment bytes boundary. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0) { if (Alignment >= unpacket_traits::alignment) pstore_partial(to, from, n, offset); else pstoreu_partial(to, from, n, offset); } /** \internal \returns a packet version of \a *from. * Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the * hardware if available to speedup the loading of data that won't be modified * by the current computation. */ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits::type* from) { return ploadt(from); } /*************************************************************************** * Fast complex products (GCC generates a function call which is very slow) ***************************************************************************/ // Eigen+CUDA does not support complexes. #if !defined(EIGEN_GPUCC) template <> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(a.real() * b.real() - a.imag() * b.imag(), a.imag() * b.real() + a.real() * b.imag()); } template <> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(a.real() * b.real() - a.imag() * b.imag(), a.imag() * b.real() + a.real() * b.imag()); } #endif /*************************************************************************** * PacketBlock, that is a collection of N packets where the number of words * in the packet is a multiple of N. ***************************************************************************/ template ::size> struct PacketBlock { Packet packet[N]; }; template EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& /*kernel*/) { // Nothing to do in the scalar case, i.e. a 1x1 matrix. } /*************************************************************************** * Selector, i.e. vector of N boolean values used to select (i.e. blend) * words from 2 packets. ***************************************************************************/ template struct Selector { bool select[N]; }; template EIGEN_DEVICE_FUNC inline Packet pblend(const Selector::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) { return ifPacket.select[0] ? thenPacket : elsePacket; } /** \internal \returns 1 / a (coeff-wise) */ template EIGEN_DEVICE_FUNC inline Packet preciprocal(const Packet& a) { using Scalar = typename unpacket_traits::type; return pdiv(pset1(Scalar(1)), a); } /** \internal \returns the reciprocal square-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet prsqrt(const Packet& a) { return preciprocal(psqrt(a)); } template ::value, bool IsInteger = NumTraits::type>::IsInteger> struct psignbit_impl; template struct psignbit_impl { EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return numext::signbit(a); } }; template struct psignbit_impl { // generic implementation if not specialized in PacketMath.h // slower than arithmetic shift typedef typename unpacket_traits::type Scalar; EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Packet run(const Packet& a) { const Packet cst_pos_one = pset1(Scalar(1)); const Packet cst_neg_one = pset1(Scalar(-1)); return pcmp_eq(por(pand(a, cst_neg_one), cst_pos_one), cst_neg_one); } }; template struct psignbit_impl { // generic implementation for integer packets EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return pcmp_lt(a, pzero(a)); } }; /** \internal \returns the sign bit of \a a as a bitmask*/ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE constexpr Packet psignbit(const Packet& a) { return psignbit_impl::run(a); } /** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */ template ::value, int> = 0> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) { return numext::atan2(y, x); } /** \internal \returns the 2-argument arc tangent of \a y and \a x (coeff-wise) */ template ::value, int> = 0> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet patan2(const Packet& y, const Packet& x) { typedef typename internal::unpacket_traits::type Scalar; // See https://en.cppreference.com/w/cpp/numeric/math/atan2 // for how corner cases are supposed to be handled according to the // IEEE floating-point standard (IEC 60559). const Packet kSignMask = pset1(-Scalar(0)); const Packet kZero = pzero(x); const Packet kOne = pset1(Scalar(1)); const Packet kPi = pset1(Scalar(EIGEN_PI)); const Packet x_has_signbit = psignbit(x); const Packet y_signmask = pand(y, kSignMask); const Packet x_signmask = pand(x, kSignMask); const Packet result_signmask = pxor(y_signmask, x_signmask); const Packet shift = por(pand(x_has_signbit, kPi), y_signmask); const Packet x_and_y_are_same = pcmp_eq(pabs(x), pabs(y)); const Packet x_and_y_are_zero = pcmp_eq(por(x, y), kZero); Packet arg = pdiv(y, x); arg = pselect(x_and_y_are_same, por(kOne, result_signmask), arg); arg = pselect(x_and_y_are_zero, result_signmask, arg); Packet result = patan(arg); result = padd(result, shift); return result; } /** \internal \returns the argument of \a a as a complex number */ template ::value, int> = 0> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) { return Packet(numext::arg(a)); } /** \internal \returns the argument of \a a as a complex number */ template ::value, int> = 0> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet pcarg(const Packet& a) { EIGEN_STATIC_ASSERT(NumTraits::type>::IsComplex, THIS METHOD IS FOR COMPLEX TYPES ONLY) using RealPacket = typename unpacket_traits::as_real; // a // r i r i ... RealPacket aflip = pcplxflip(a).v; // i r i r ... RealPacket result = patan2(aflip, a.v); // atan2 crap atan2 crap ... return (Packet)pand(result, peven_mask(result)); // atan2 0 atan2 0 ... } } // end namespace internal } // end namespace Eigen #endif // EIGEN_GENERIC_PACKET_MATH_H