// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // Copyright (C) 2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define TEST_ENABLE_TEMPORARY_TRACKING #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 // ^^ see bug 1449 #include "main.h" template void matrixRedux(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; Matrix m2(rows, rows); m2.setRandom(); VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); VERIFY_IS_APPROX( MatrixType::Ones(rows, cols).sum(), Scalar(float( rows * cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); for (int j = 0; j < cols; j++) for (int i = 0; i < rows; i++) { s += m1(i, j); p *= m1_for_prod(i, j); minc = (std::min)(numext::real(minc), numext::real(m1(i, j))); maxc = (std::max)(numext::real(maxc), numext::real(m1(i, j))); } const Scalar mean = s / Scalar(RealScalar(rows * cols)); VERIFY_IS_APPROX(m1.sum(), s); VERIFY_IS_APPROX(m1.mean(), mean); VERIFY_IS_APPROX(m1_for_prod.prod(), p); VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); // test that partial reduction works if nested expressions is forced to evaluate early VERIFY_IS_APPROX((m1.matrix() * m1.matrix().transpose()).cwiseProduct(m2.matrix()).rowwise().sum().sum(), (m1.matrix() * m1.matrix().transpose()).eval().cwiseProduct(m2.matrix()).rowwise().sum().sum()); // test slice vectorization assuming assign is ok Index r0 = internal::random(0, rows - 1); Index c0 = internal::random(0, cols - 1); Index r1 = internal::random(r0 + 1, rows) - r0; Index c1 = internal::random(c0 + 1, cols) - c0; VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).sum(), m1.block(r0, c0, r1, c1).eval().sum()); VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).mean(), m1.block(r0, c0, r1, c1).eval().mean()); VERIFY_IS_APPROX(m1_for_prod.block(r0, c0, r1, c1).prod(), m1_for_prod.block(r0, c0, r1, c1).eval().prod()); VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().minCoeff(), m1.block(r0, c0, r1, c1).real().eval().minCoeff()); VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().maxCoeff(), m1.block(r0, c0, r1, c1).real().eval().maxCoeff()); // regression for bug 1090 const int R1 = MatrixType::RowsAtCompileTime >= 2 ? MatrixType::RowsAtCompileTime / 2 : 6; const int C1 = MatrixType::ColsAtCompileTime >= 2 ? MatrixType::ColsAtCompileTime / 2 : 6; if (R1 <= rows - r0 && C1 <= cols - c0) { VERIFY_IS_APPROX((m1.template block(r0, c0).sum()), m1.block(r0, c0, R1, C1).sum()); } // test empty objects VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).sum(), Scalar(0)); VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).prod(), Scalar(1)); // test nesting complex expression VERIFY_EVALUATION_COUNT((m1.matrix() * m1.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1)); VERIFY_EVALUATION_COUNT(((m1.matrix() * m1.matrix().transpose()) + m2).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1)); } template void vectorRedux(const VectorType& w) { using std::abs; typedef typename VectorType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index size = w.size(); VectorType v = VectorType::Random(size); VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod for (int i = 1; i < size; i++) { Scalar s(0), p(1); RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); for (int j = 0; j < i; j++) { s += v[j]; p *= v_for_prod[j]; minc = (std::min)(minc, numext::real(v[j])); maxc = (std::max)(maxc, numext::real(v[j])); } VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); } for (int i = 0; i < size - 1; i++) { Scalar s(0), p(1); RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); for (int j = i; j < size; j++) { s += v[j]; p *= v_for_prod[j]; minc = (std::min)(minc, numext::real(v[j])); maxc = (std::max)(maxc, numext::real(v[j])); } VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size - i).sum()), Scalar(1)); VERIFY_IS_APPROX(p, v_for_prod.tail(size - i).prod()); VERIFY_IS_APPROX(minc, v.real().tail(size - i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().tail(size - i).maxCoeff()); } for (int i = 0; i < size / 2; i++) { Scalar s(0), p(1); RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); for (int j = i; j < size - i; j++) { s += v[j]; p *= v_for_prod[j]; minc = (std::min)(minc, numext::real(v[j])); maxc = (std::max)(maxc, numext::real(v[j])); } VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size - 2 * i).sum()), Scalar(1)); VERIFY_IS_APPROX(p, v_for_prod.segment(i, size - 2 * i).prod()); VERIFY_IS_APPROX(minc, v.real().segment(i, size - 2 * i).minCoeff()); VERIFY_IS_APPROX(maxc, v.real().segment(i, size - 2 * i).maxCoeff()); } // test empty objects VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); VERIFY_RAISES_ASSERT(v.head(0).mean()); VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); } EIGEN_DECLARE_TEST(redux) { // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. int maxsize = (std::min)(100, EIGEN_TEST_MAX_SIZE); TEST_SET_BUT_UNUSED_VARIABLE(maxsize); for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(matrixRedux(Matrix())); CALL_SUBTEST_1(matrixRedux(Array())); CALL_SUBTEST_2(matrixRedux(Matrix2f())); CALL_SUBTEST_2(matrixRedux(Array2f())); CALL_SUBTEST_2(matrixRedux(Array22f())); CALL_SUBTEST_3(matrixRedux(Matrix4d())); CALL_SUBTEST_3(matrixRedux(Array4d())); CALL_SUBTEST_3(matrixRedux(Array44d())); CALL_SUBTEST_4(matrixRedux(MatrixXcf(internal::random(1, maxsize), internal::random(1, maxsize)))); CALL_SUBTEST_4(matrixRedux(ArrayXXcf(internal::random(1, maxsize), internal::random(1, maxsize)))); CALL_SUBTEST_5(matrixRedux(MatrixXd(internal::random(1, maxsize), internal::random(1, maxsize)))); CALL_SUBTEST_5(matrixRedux(ArrayXXd(internal::random(1, maxsize), internal::random(1, maxsize)))); CALL_SUBTEST_6(matrixRedux(MatrixXi(internal::random(1, maxsize), internal::random(1, maxsize)))); CALL_SUBTEST_6(matrixRedux(ArrayXXi(internal::random(1, maxsize), internal::random(1, maxsize)))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_7(vectorRedux(Vector4f())); CALL_SUBTEST_7(vectorRedux(Array4f())); CALL_SUBTEST_5(vectorRedux(VectorXd(internal::random(1, maxsize)))); CALL_SUBTEST_5(vectorRedux(ArrayXd(internal::random(1, maxsize)))); CALL_SUBTEST_8(vectorRedux(VectorXf(internal::random(1, maxsize)))); CALL_SUBTEST_8(vectorRedux(ArrayXf(internal::random(1, maxsize)))); } }