// g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && // ./a.out g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 // -DSIZE=2000 && ./a.out // -DNOGMM -DNOMTL -DCSPARSE // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a #ifndef SIZE #define SIZE 650000 #endif #ifndef DENSITY #define DENSITY 0.01 #endif #ifndef REPEAT #define REPEAT 1 #endif #include "BenchSparseUtil.h" #ifndef MINDENSITY #define MINDENSITY 0.0004 #endif #ifndef NBTRIES #define NBTRIES 10 #endif #define BENCH(X) \ timer.reset(); \ for (int _j = 0; _j < NBTRIES; ++_j) { \ timer.start(); \ for (int _k = 0; _k < REPEAT; ++_k) { \ X \ } \ timer.stop(); \ } #ifdef CSPARSE cs* cs_sorted_multiply(const cs* a, const cs* b) { cs* A = cs_transpose(a, 1); cs* B = cs_transpose(b, 1); cs* D = cs_multiply(B, A); /* D = B'*A' */ cs_spfree(A); cs_spfree(B); cs_dropzeros(D); /* drop zeros from D */ cs* C = cs_transpose(D, 1); /* C = D', so that C is sorted */ cs_spfree(D); return C; } #endif int main(int argc, char* argv[]) { int rows = SIZE; int cols = SIZE; float density = DENSITY; EigenSparseMatrix sm1(rows, cols); DenseVector v1(cols), v2(cols); v1.setRandom(); BenchTimer timer; for (float density = DENSITY; density >= MINDENSITY; density *= 0.5) { // fillMatrix(density, rows, cols, sm1); fillMatrix2(7, rows, cols, sm1); // dense matrices #ifdef DENSEMATRIX { std::cout << "Eigen Dense\t" << density * 100 << "%\n"; DenseMatrix m1(rows, cols); eiToDense(sm1, m1); timer.reset(); timer.start(); for (int k = 0; k < REPEAT; ++k) v2 = m1 * v1; timer.stop(); std::cout << " a * v:\t" << timer.best() << " " << double(REPEAT) / timer.best() << " * / sec " << endl; timer.reset(); timer.start(); for (int k = 0; k < REPEAT; ++k) v2 = m1.transpose() * v1; timer.stop(); std::cout << " a' * v:\t" << timer.best() << endl; } #endif // eigen sparse matrices { std::cout << "Eigen sparse\t" << sm1.nonZeros() / float(sm1.rows() * sm1.cols()) * 100 << "%\n"; BENCH(asm("#myc"); v2 = sm1 * v1; asm("#myd");) std::cout << " a * v:\t" << timer.best() / REPEAT << " " << double(REPEAT) / timer.best(REAL_TIMER) << " * / sec " << endl; BENCH({ asm("#mya"); v2 = sm1.transpose() * v1; asm("#myb"); }) std::cout << " a' * v:\t" << timer.best() / REPEAT << endl; } // { // DynamicSparseMatrix m1(sm1); // std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n"; // // BENCH(for (int k=0; k gmmV1(cols), gmmV2(cols); Map >(&gmmV1[0], cols) = v1; Map >(&gmmV2[0], cols) = v2; BENCH(asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy");) std::cout << " a * v:\t" << timer.value() << endl; BENCH(gmm::mult(gmm::transposed(m1), gmmV1, gmmV2);) std::cout << " a' * v:\t" << timer.value() << endl; } #endif #ifndef NOUBLAS { std::cout << "ublas sparse\t" << density * 100 << "%\n"; UBlasSparse m1(rows, cols); eiToUblas(sm1, m1); boost::numeric::ublas::vector uv1, uv2; eiToUblasVec(v1, uv1); eiToUblasVec(v2, uv2); // std::vector gmmV1(cols), gmmV2(cols); // Map >(&gmmV1[0], cols) = v1; // Map >(&gmmV2[0], cols) = v2; BENCH(uv2 = boost::numeric::ublas::prod(m1, uv1);) std::cout << " a * v:\t" << timer.value() << endl; // BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); ) // std::cout << " a' * v:\t" << timer.value() << endl; } #endif // MTL4 #ifndef NOMTL { std::cout << "MTL4\t" << density * 100 << "%\n"; MtlSparse m1(rows, cols); eiToMtl(sm1, m1); mtl::dense_vector mtlV1(cols, 1.0); mtl::dense_vector mtlV2(cols, 1.0); timer.reset(); timer.start(); for (int k = 0; k < REPEAT; ++k) mtlV2 = m1 * mtlV1; timer.stop(); std::cout << " a * v:\t" << timer.value() << endl; timer.reset(); timer.start(); for (int k = 0; k < REPEAT; ++k) mtlV2 = trans(m1) * mtlV1; timer.stop(); std::cout << " a' * v:\t" << timer.value() << endl; } #endif std::cout << "\n\n"; } return 0; }