// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. static bool g_called; #define EIGEN_SCALAR_BINARY_OP_PLUGIN \ { g_called |= (!internal::is_same::value); } #include "main.h" template void linearStructure(const MatrixType& m) { using std::abs; /* this test covers the following files: CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h */ typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); Scalar s1 = internal::random(); while (abs(s1) < RealScalar(1e-3)) s1 = internal::random(); Index r = internal::random(0, rows - 1), c = internal::random(0, cols - 1); VERIFY_IS_APPROX(-(-m1), m1); VERIFY_IS_APPROX(m1 + m1, 2 * m1); VERIFY_IS_APPROX(m1 + m2 - m1, m2); VERIFY_IS_APPROX(-m2 + m1 + m2, m1); VERIFY_IS_APPROX(m1 * s1, s1 * m1); VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2); VERIFY_IS_APPROX((-m1 + m2) * s1, -s1 * m1 + s1 * m2); m3 = m2; m3 += m1; VERIFY_IS_APPROX(m3, m1 + m2); m3 = m2; m3 -= m1; VERIFY_IS_APPROX(m3, m2 - m1); m3 = m2; m3 *= s1; VERIFY_IS_APPROX(m3, s1 * m2); if (!NumTraits::IsInteger) { m3 = m2; m3 /= s1; VERIFY_IS_APPROX(m3, m2 / s1); } // again, test operator() to check const-qualification VERIFY_IS_APPROX((-m1)(r, c), -(m1(r, c))); VERIFY_IS_APPROX((m1 - m2)(r, c), (m1(r, c)) - (m2(r, c))); VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c))); VERIFY_IS_APPROX((s1 * m1)(r, c), s1 * (m1(r, c))); VERIFY_IS_APPROX((m1 * s1)(r, c), (m1(r, c)) * s1); if (!NumTraits::IsInteger) VERIFY_IS_APPROX((m1 / s1)(r, c), (m1(r, c)) / s1); // use .block to disable vectorization and compare to the vectorized version VERIFY_IS_APPROX(m1 + m1.block(0, 0, rows, cols), m1 + m1); VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), m1.cwiseProduct(m1)); VERIFY_IS_APPROX(m1 - m1.block(0, 0, rows, cols), m1 - m1); VERIFY_IS_APPROX(m1.block(0, 0, rows, cols) * s1, m1 * s1); } // Make sure that complex * real and real * complex are properly optimized template void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; RealScalar s = internal::random(); MatrixType m1 = MatrixType::Random(rows, cols); g_called = false; VERIFY_IS_APPROX(s * m1, Scalar(s) * m1); VERIFY(g_called && "real * matrix not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1 * s, m1 * Scalar(s)); VERIFY(g_called && "matrix * real not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1 / s, m1 / Scalar(s)); VERIFY(g_called && "matrix / real not properly optimized"); g_called = false; VERIFY_IS_APPROX(s + m1.array(), Scalar(s) + m1.array()); VERIFY(g_called && "real + matrix not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1.array() + s, m1.array() + Scalar(s)); VERIFY(g_called && "matrix + real not properly optimized"); g_called = false; VERIFY_IS_APPROX(s - m1.array(), Scalar(s) - m1.array()); VERIFY(g_called && "real - matrix not properly optimized"); g_called = false; VERIFY_IS_APPROX(m1.array() - s, m1.array() - Scalar(s)); VERIFY(g_called && "matrix - real not properly optimized"); } template void linearstructure_overflow() { // make sure that /=scalar and /scalar do not overflow // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not Matrix4d m2, m3; m3 = m2 = Matrix4d::Random() * 1e-20; m2 = m2 / 4.9e-320; VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones()); m3 /= 4.9e-320; VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones()); } EIGEN_DECLARE_TEST(linearstructure) { g_called = true; VERIFY(g_called); // avoid `unneeded-internal-declaration` warning. for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(linearStructure(Matrix())); CALL_SUBTEST_2(linearStructure(Matrix2f())); CALL_SUBTEST_3(linearStructure(Vector3d())); CALL_SUBTEST_4(linearStructure(Matrix4d())); CALL_SUBTEST_5(linearStructure(MatrixXcf(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_6(linearStructure( MatrixXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7(linearStructure( MatrixXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8(linearStructure(MatrixXcd(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_9(linearStructure( ArrayXXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_10(linearStructure( ArrayXXcf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_11(real_complex()); CALL_SUBTEST_11(real_complex(10, 10)); CALL_SUBTEST_11(real_complex(10, 10)); } CALL_SUBTEST_4(linearstructure_overflow<0>()); }