// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include "main.h" template struct matrix_of { using type = MatrixType; }; template struct matrix_of, NewScalar> { using type = Eigen::Matrix; }; // Unary function reference. template ::type>::type> OutMatrixType cwise_ref(const MatrixType& m, Func f = Func()) { OutMatrixType out(m.rows(), m.cols()); for (Eigen::Index r = 0; r < m.rows(); ++r) { for (Eigen::Index c = 0; c < m.cols(); ++c) { out(r, c) = f(m(r, c)); } } return out; } // Binary function reference. template ::type>::type> OutMatrixType cwise_ref(const MatrixType& m1, const MatrixType& m2, Func f = Func()) { OutMatrixType out(m1.rows(), m1.cols()); for (Eigen::Index r = 0; r < m1.rows(); ++r) { for (Eigen::Index c = 0; c < m1.cols(); ++c) { out(r, c) = f(m1(r, c), m2(r, c)); } } return out; } template void test_cwise_real(const MatrixType& m) { using Scalar = typename MatrixType::Scalar; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); MatrixType m2, m3, m4; // Supported unary ops. VERIFY_IS_CWISE_APPROX(m1.cwiseAbs(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::abs(x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseSign(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::sign(x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseCbrt(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::cbrt(x); })); // For integers, avoid division by zero. m2 = m1; if (Eigen::NumTraits::IsInteger) { m2 = m1.unaryExpr([](const Scalar& x) { return Eigen::numext::equal_strict(x, Scalar(0)) ? Scalar(1) : x; }); } VERIFY_IS_CWISE_APPROX(m2.cwiseInverse(), cwise_ref(m2, [](const Scalar& x) { return Scalar(Scalar(1) / x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseArg(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::arg(x); })); // Only take sqrt of positive values. m2 = m1.cwiseAbs(); VERIFY_IS_CWISE_APPROX(m2.cwiseSqrt(), cwise_ref(m2, [](const Scalar& x) { return Eigen::numext::sqrt(x); })); // Only find Square/Abs2 of +/- sqrt values so we don't overflow. m2 = m2.cwiseSqrt().array() * m1.cwiseSign().array(); VERIFY_IS_CWISE_APPROX(m2.cwiseAbs2(), cwise_ref(m2, [](const Scalar& x) { return Eigen::numext::abs2(x); })); VERIFY_IS_CWISE_APPROX(m2.cwiseSquare(), cwise_ref(m2, [](const Scalar& x) { return Scalar(x * x); })); VERIFY_IS_CWISE_APPROX(m2.cwisePow(Scalar(2)), cwise_ref(m2, [](const Scalar& x) { return Eigen::numext::pow(x, Scalar(2)); })); // Supported binary ops. m1.setRandom(rows, cols); m2.setRandom(rows, cols); VERIFY_IS_CWISE_EQUAL(m1.cwiseMin(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMin(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMin(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMin(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.cwiseMax(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMax(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMax(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMax(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); // Scalar comparison. Scalar mean = Eigen::NumTraits::highest() / Scalar(2) + Eigen::NumTraits::lowest() / Scalar(2); m4.setConstant(rows, cols, mean); VERIFY_IS_CWISE_EQUAL(m1.cwiseMin(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMin(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMin(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMin(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::mini(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.cwiseMax(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMax(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMax(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); VERIFY_IS_CWISE_EQUAL(m1.template cwiseMax(mean), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::maxi(x, y); })); // For products, avoid integer overflow by limiting the input < sqrt(max). m3 = m1; m4 = m2; if (Eigen::NumTraits::IsInteger) { const Scalar kMax = Eigen::numext::sqrt(Eigen::NumTraits::highest()); m3 = m1 - ((m1 / kMax) * kMax); m4 = m2 - ((m2 / kMax) * kMax); } VERIFY_IS_CWISE_APPROX(m3.cwiseProduct(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Scalar(x * y); })); // For quotients involving integers, avoid division by zero. m4 = m2; if (Eigen::NumTraits::IsInteger) { m4 = m2.unaryExpr([](const Scalar& x) { return Eigen::numext::equal_strict(x, Scalar(0)) ? Scalar(1) : x; }); } VERIFY_IS_CWISE_APPROX(m1.cwiseQuotient(m4), cwise_ref(m1, m4, [](const Scalar& x, const Scalar& y) { return Scalar(x / y); })); // For equality comparisons, limit range to increase number of equalities. if (Eigen::NumTraits::IsInteger) { const Scalar kMax = Scalar(10); m3 = m1 - ((m1 / kMax) * kMax); m4 = m2 - ((m2 / kMax) * kMax); mean = Eigen::NumTraits::IsSigned ? Scalar(0) : kMax / Scalar(2); } else { const Scalar kShift = Scalar(10); m3 = (m1 * kShift).array().floor() / kShift; m4 = (m2 * kShift).array().floor() / kShift; mean = Scalar(0); } VERIFY_IS_CWISE_EQUAL(m3.cwiseEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseNotEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseLess(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x < y; })); VERIFY_IS_CWISE_EQUAL(m3.cwiseGreater(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x > y; })); VERIFY_IS_CWISE_EQUAL(m3.cwiseLessOrEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x <= y; })); VERIFY_IS_CWISE_EQUAL(m3.cwiseGreaterOrEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x >= y; })); // Typed-Equality. VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedNotEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedLess(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x < y ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedGreater(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x > y ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedLessOrEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x <= y ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedGreaterOrEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x >= y ? Scalar(1) : Scalar(0); })); // Scalar. m4.setConstant(rows, cols, mean); VERIFY_IS_CWISE_EQUAL(m3.cwiseEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseNotEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseLess(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x < y; })); VERIFY_IS_CWISE_EQUAL(m3.cwiseGreater(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x > y; })); VERIFY_IS_CWISE_EQUAL(m3.cwiseLessOrEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x <= y; })); VERIFY_IS_CWISE_EQUAL(m3.cwiseGreaterOrEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x >= y; })); // Typed. VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedNotEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedLess(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x < y ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedGreater(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x > y ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedLessOrEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x <= y ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedGreaterOrEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return x >= y ? Scalar(1) : Scalar(0); })); } template void test_cwise_complex(const MatrixType& m) { using Scalar = typename MatrixType::Scalar; using RealScalar = typename NumTraits::Real; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); MatrixType m2, m3, m4; // Supported unary ops. VERIFY_IS_CWISE_APPROX(m1.cwiseAbs(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::abs(x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseSqrt(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::sqrt(x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseInverse(), cwise_ref(m1, [](const Scalar& x) { return Scalar(Scalar(1) / x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseArg(), cwise_ref(m1, [](const Scalar& x) { return Eigen::numext::arg(x); })); VERIFY_IS_CWISE_APPROX(m1.cwiseCArg(), cwise_ref(m1, [](const Scalar& x) { return Scalar(Eigen::numext::arg(x)); })); // Only find Square/Abs2 of +/- sqrt values so we don't overflow. m2 = m1.cwiseSqrt().array() * m1.cwiseSign().array(); VERIFY_IS_CWISE_APPROX(m2.cwiseAbs2(), cwise_ref(m2, [](const Scalar& x) { return Eigen::numext::abs2(x); })); VERIFY_IS_CWISE_APPROX(m2.cwiseSquare(), cwise_ref(m2, [](const Scalar& x) { return Scalar(x * x); })); VERIFY_IS_CWISE_APPROX(m2.cwisePow(Scalar(2)), cwise_ref(m2, [](const Scalar& x) { return Eigen::numext::pow(x, Scalar(2)); })); // Supported binary ops. m1.setRandom(rows, cols); m2.setRandom(rows, cols); VERIFY_IS_CWISE_APPROX(m1.cwiseProduct(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Scalar(x * y); })); VERIFY_IS_CWISE_APPROX(m1.cwiseQuotient(m2), cwise_ref(m1, m2, [](const Scalar& x, const Scalar& y) { return Scalar(x / y); })); // For equality comparisons, limit range to increase number of equalities. { const RealScalar kShift = RealScalar(10); m3 = m1; m4 = m2; m3.real() = (m1.real() * kShift).array().floor() / kShift; m3.imag() = (m1.imag() * kShift).array().floor() / kShift; m4.real() = (m2.real() * kShift).array().floor() / kShift; m4.imag() = (m2.imag() * kShift).array().floor() / kShift; } VERIFY_IS_CWISE_EQUAL(m3.cwiseEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseNotEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y); })); // Typed-Equality. VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedNotEqual(m4), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); // Scalar. Scalar mean = Scalar(0); m4.setConstant(rows, cols, mean); VERIFY_IS_CWISE_EQUAL(m3.cwiseEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseNotEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y); })); // Typed. VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); VERIFY_IS_CWISE_EQUAL(m3.cwiseTypedNotEqual(mean), cwise_ref(m3, m4, [](const Scalar& x, const Scalar& y) { return !Eigen::numext::equal_strict(x, y) ? Scalar(1) : Scalar(0); })); } EIGEN_DECLARE_TEST(matrix_cwise) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_1(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_1(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_1(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_2(test_cwise_complex(Eigen::Matrix, Eigen::Dynamic, Eigen::Dynamic>(20, 20))); CALL_SUBTEST_2(test_cwise_complex(Eigen::Matrix, Eigen::Dynamic, Eigen::Dynamic>(20, 20))); CALL_SUBTEST_3(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_3(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_3(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_3(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_4(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_4(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_4(test_cwise_real(Eigen::Matrix(20, 20))); CALL_SUBTEST_4(test_cwise_real(Eigen::Matrix(20, 20))); } }