// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Alexey Korepanov // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_RUNTIME_NO_MALLOC #include "main.h" #include #include template void real_qz(const MatrixType& m) { /* this test covers the following files: RealQZ.h */ using std::abs; Index dim = m.cols(); MatrixType A = MatrixType::Random(dim, dim), B = MatrixType::Random(dim, dim); // Regression test for bug 985: Randomly set rows or columns to zero Index k = internal::random(0, dim - 1); switch (internal::random(0, 10)) { case 0: A.row(k).setZero(); break; case 1: A.col(k).setZero(); break; case 2: B.row(k).setZero(); break; case 3: B.col(k).setZero(); break; default: break; } RealQZ qz(dim); // TODO enable full-prealocation of required memory, this probably requires an in-place mode for // HessenbergDecomposition // Eigen::internal::set_is_malloc_allowed(false); qz.compute(A, B); // Eigen::internal::set_is_malloc_allowed(true); VERIFY_IS_EQUAL(qz.info(), Success); // check for zeros bool all_zeros = true; for (Index i = 0; i < A.cols(); i++) for (Index j = 0; j < i; j++) { if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j)))) { std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i, j) << std::endl; all_zeros = false; } if (j < i - 1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j)))) { std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << std::endl; all_zeros = false; } if (j == i - 1 && j > 0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) && !numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1)))) { std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << " && S(" << i - 1 << "," << j - 1 << ") = " << qz.matrixS()(i - 1, j - 1) << std::endl; all_zeros = false; } } VERIFY_IS_EQUAL(all_zeros, true); VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A); VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B); VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim)); VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim)); } EIGEN_DECLARE_TEST(real_qz) { int s = 0; for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(real_qz(Matrix4f())); s = internal::random(1, EIGEN_TEST_MAX_SIZE / 4); CALL_SUBTEST_2(real_qz(MatrixXd(s, s))); // some trivial but implementation-wise tricky cases CALL_SUBTEST_2(real_qz(MatrixXd(1, 1))); CALL_SUBTEST_2(real_qz(MatrixXd(2, 2))); CALL_SUBTEST_3(real_qz(Matrix())); CALL_SUBTEST_4(real_qz(Matrix2d())); } TEST_SET_BUT_UNUSED_VARIABLE(s) }