// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR #undef EIGEN_DEFAULT_TO_ROW_MAJOR #endif static long int nb_temporaries; inline void on_temporary_creation() { // here's a great place to set a breakpoint when debugging failures in this test! nb_temporaries++; } #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN \ { on_temporary_creation(); } #include "main.h" #include #define VERIFY_EVALUATION_COUNT(XPR, N) \ { \ nb_temporaries = 0; \ CALL_SUBTEST(XPR); \ if (nb_temporaries != N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY((#XPR) && nb_temporaries == N); \ } template void check_const_correctness(const PlainObjectType &) { // verify that ref-to-const don't have LvalueBit typedef std::add_const_t ConstPlainObjectType; VERIFY(!(internal::traits >::Flags & LvalueBit)); VERIFY(!(internal::traits >::Flags & LvalueBit)); VERIFY(!(Ref::Flags & LvalueBit)); VERIFY(!(Ref::Flags & LvalueBit)); } template EIGEN_DONT_INLINE void call_ref_1(Ref > a, const B &b) { VERIFY_IS_EQUAL(a.toDense(), b.toDense()); } template EIGEN_DONT_INLINE void call_ref_2(const Ref > &a, const B &b) { VERIFY_IS_EQUAL(a.toDense(), b.toDense()); } template EIGEN_DONT_INLINE void call_ref_3(const Ref, StandardCompressedFormat> &a, const B &b) { VERIFY(a.isCompressed()); VERIFY_IS_EQUAL(a.toDense(), b.toDense()); } template EIGEN_DONT_INLINE void call_ref_4(Ref > a, const B &b) { VERIFY_IS_EQUAL(a.toDense(), b.toDense()); } template EIGEN_DONT_INLINE void call_ref_5(const Ref > &a, const B &b) { VERIFY_IS_EQUAL(a.toDense(), b.toDense()); } void call_ref() { SparseMatrix A = MatrixXf::Random(10, 10).sparseView(0.5, 1); SparseMatrix B = MatrixXf::Random(10, 10).sparseView(0.5, 1); SparseMatrix C = MatrixXf::Random(10, 10).sparseView(0.5, 1); C.reserve(VectorXi::Constant(C.outerSize(), 2)); const SparseMatrix &Ac(A); Block > Ab(A, 0, 1, 3, 3); const Block > Abc(A, 0, 1, 3, 3); SparseVector vc = VectorXf::Random(10).sparseView(0.5, 1); SparseVector vr = VectorXf::Random(10).sparseView(0.5, 1); SparseMatrix AA = A * A; VERIFY_EVALUATION_COUNT(call_ref_1(A, A), 0); // VERIFY_EVALUATION_COUNT( call_ref_1(Ac, Ac), 0); // does not compile on purpose VERIFY_EVALUATION_COUNT(call_ref_2(A, A), 0); VERIFY_EVALUATION_COUNT(call_ref_3(A, A), 0); VERIFY_EVALUATION_COUNT(call_ref_2(A.transpose(), A.transpose()), 1); VERIFY_EVALUATION_COUNT(call_ref_3(A.transpose(), A.transpose()), 1); VERIFY_EVALUATION_COUNT(call_ref_2(Ac, Ac), 0); VERIFY_EVALUATION_COUNT(call_ref_3(Ac, Ac), 0); VERIFY_EVALUATION_COUNT(call_ref_2(A + A, 2 * Ac), 1); VERIFY_EVALUATION_COUNT(call_ref_3(A + A, 2 * Ac), 1); VERIFY_EVALUATION_COUNT(call_ref_2(B, B), 1); VERIFY_EVALUATION_COUNT(call_ref_3(B, B), 1); VERIFY_EVALUATION_COUNT(call_ref_2(B.transpose(), B.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_3(B.transpose(), B.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_2(A * A, AA), 3); VERIFY_EVALUATION_COUNT(call_ref_3(A * A, AA), 3); VERIFY(!C.isCompressed()); VERIFY_EVALUATION_COUNT(call_ref_3(C, C), 1); Ref > Ar(A); VERIFY_IS_APPROX(Ar + Ar, A + A); VERIFY_EVALUATION_COUNT(call_ref_1(Ar, A), 0); VERIFY_EVALUATION_COUNT(call_ref_2(Ar, A), 0); Ref > Br(B); VERIFY_EVALUATION_COUNT(call_ref_1(Br.transpose(), Br.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_2(Br, Br), 1); VERIFY_EVALUATION_COUNT(call_ref_2(Br.transpose(), Br.transpose()), 0); Ref > Arc(A); // VERIFY_EVALUATION_COUNT( call_ref_1(Arc, Arc), 0); // does not compile on purpose VERIFY_EVALUATION_COUNT(call_ref_2(Arc, Arc), 0); VERIFY_EVALUATION_COUNT(call_ref_2(A.middleCols(1, 3), A.middleCols(1, 3)), 0); VERIFY_EVALUATION_COUNT(call_ref_2(A.col(2), A.col(2)), 0); VERIFY_EVALUATION_COUNT(call_ref_2(vc, vc), 0); VERIFY_EVALUATION_COUNT(call_ref_2(vr.transpose(), vr.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_2(vr, vr.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_2(A.block(1, 1, 3, 3), A.block(1, 1, 3, 3)), 1); // should be 0 (allocate starts/nnz only) VERIFY_EVALUATION_COUNT(call_ref_4(vc, vc), 0); VERIFY_EVALUATION_COUNT(call_ref_4(vr, vr.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_5(vc, vc), 0); VERIFY_EVALUATION_COUNT(call_ref_5(vr, vr.transpose()), 0); VERIFY_EVALUATION_COUNT(call_ref_4(A.col(2), A.col(2)), 0); VERIFY_EVALUATION_COUNT(call_ref_5(A.col(2), A.col(2)), 0); // VERIFY_EVALUATION_COUNT( call_ref_4(A.row(2), A.row(2).transpose()), 1); // does not compile on purpose VERIFY_EVALUATION_COUNT(call_ref_5(A.row(2), A.row(2).transpose()), 1); } EIGEN_DECLARE_TEST(sparse_ref) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(check_const_correctness(SparseMatrix())); CALL_SUBTEST_1(check_const_correctness(SparseMatrix())); CALL_SUBTEST_2(call_ref()); CALL_SUBTEST_3(check_const_correctness(SparseVector())); CALL_SUBTEST_3(check_const_correctness(SparseVector())); } }