// This file is triangularView of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_TEST_PART_100) || defined(EIGEN_TEST_PART_ALL) #define EIGEN_NO_DEPRECATED_WARNING #endif #include "main.h" template void triangular_deprecated(const MatrixType& m) { Index rows = m.rows(); Index cols = m.cols(); MatrixType m1, m2, m3, m4; m1.setRandom(rows, cols); m2.setRandom(rows, cols); m3 = m1; m4 = m2; // deprecated method: m1.template triangularView().swap(m2); // use this method instead: m3.template triangularView().swap(m4.template triangularView()); VERIFY_IS_APPROX(m1, m3); VERIFY_IS_APPROX(m2, m4); // deprecated method: m1.template triangularView().swap(m4); // use this method instead: m3.template triangularView().swap(m2.template triangularView()); VERIFY_IS_APPROX(m1, m3); VERIFY_IS_APPROX(m2, m4); } template void triangular_square(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; RealScalar largerEps = 10 * test_precision(); Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), r1(rows, cols), r2(rows, cols); VectorType v2 = VectorType::Random(rows); VectorType v3 = VectorType::Zero(rows); MatrixType m1up = m1.template triangularView(); MatrixType m2up = m2.template triangularView(); if (rows * cols > 1) { VERIFY(m1up.isUpperTriangular()); VERIFY(m2up.transpose().isLowerTriangular()); VERIFY(!m2.isLowerTriangular()); } // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); // test overloaded operator+= r1.setZero(); r2.setZero(); r1.template triangularView() += m1; r2 += m1up; VERIFY_IS_APPROX(r1, r2); // test overloaded operator= m1.setZero(); m1.template triangularView() = m2.transpose() + m2; m3 = m2.transpose() + m2; VERIFY_IS_APPROX(m3.template triangularView().transpose().toDenseMatrix(), m1); // test overloaded operator= m1.setZero(); m1.template triangularView() = m2.transpose() + m2; VERIFY_IS_APPROX(m3.template triangularView().toDenseMatrix(), m1); VERIFY_IS_APPROX(m3.template triangularView().conjugate().toDenseMatrix(), m3.conjugate().template triangularView().toDenseMatrix()); m1 = MatrixType::Random(rows, cols); for (int i = 0; i < rows; ++i) while (numext::abs2(m1(i, i)) < RealScalar(1e-1)) m1(i, i) = internal::random(); Transpose trm4(m4); // test back and forward substitution with a vector as the rhs m3 = m1.template triangularView(); v3 = m3.adjoint() * (m1.adjoint().template triangularView().solve(v2)); VERIFY(v2.isApprox(v3, largerEps)); m3 = m1.template triangularView(); v3 = m3.transpose() * (m1.transpose().template triangularView().solve(v2)); VERIFY(v2.isApprox(v3, largerEps)); m3 = m1.template triangularView(); v3 = m3 * (m1.template triangularView().solve(v2)); VERIFY(v2.isApprox(v3, largerEps)); m3 = m1.template triangularView(); v3 = m3.conjugate() * (m1.conjugate().template triangularView().solve(v2)); VERIFY(v2.isApprox(v3, largerEps)); // test back and forward substitution with a matrix as the rhs m3 = m1.template triangularView(); m4 = m3.adjoint() * (m1.adjoint().template triangularView().solve(m2)); VERIFY(m2.isApprox(m4, largerEps)); m3 = m1.template triangularView(); m4 = m3.transpose() * (m1.transpose().template triangularView().solve(m2)); VERIFY(m2.isApprox(m4, largerEps)); m3 = m1.template triangularView(); m4 = m3 * (m1.template triangularView().solve(m2)); VERIFY(m2.isApprox(m4, largerEps)); m3 = m1.template triangularView(); m4 = m3.conjugate() * (m1.conjugate().template triangularView().solve(m2)); VERIFY(m2.isApprox(m4, largerEps)); // check M * inv(L) using in place API m4 = m3; m1.transpose().template triangularView().solveInPlace(trm4); VERIFY_IS_APPROX(m4 * m1.template triangularView(), m3); // check M * inv(U) using in place API m3 = m1.template triangularView(); m4 = m3; m3.transpose().template triangularView().solveInPlace(trm4); VERIFY_IS_APPROX(m4 * m1.template triangularView(), m3); // check solve with unit diagonal m3 = m1.template triangularView(); VERIFY(m2.isApprox(m3 * (m1.template triangularView().solve(m2)), largerEps)); // VERIFY(( m1.template triangularView() // * m2.template triangularView()).isUpperTriangular()); // test swap m1.setOnes(); m2.setZero(); m2.template triangularView().swap(m1.template triangularView()); m3.setZero(); m3.template triangularView().setOnes(); VERIFY_IS_APPROX(m2, m3); m1.setRandom(); m3 = m1.template triangularView(); Matrix m5(cols, internal::random(1, 20)); m5.setRandom(); Matrix m6(internal::random(1, 20), rows); m6.setRandom(); VERIFY_IS_APPROX(m1.template triangularView() * m5, m3 * m5); VERIFY_IS_APPROX(m6 * m1.template triangularView(), m6 * m3); m1up = m1.template triangularView(); VERIFY_IS_APPROX(m1.template selfadjointView().template triangularView().toDenseMatrix(), m1up); VERIFY_IS_APPROX(m1up.template selfadjointView().template triangularView().toDenseMatrix(), m1up); VERIFY_IS_APPROX(m1.template selfadjointView().template triangularView().toDenseMatrix(), m1up.adjoint()); VERIFY_IS_APPROX(m1up.template selfadjointView().template triangularView().toDenseMatrix(), m1up.adjoint()); VERIFY_IS_APPROX(m1.template selfadjointView().diagonal(), m1.diagonal()); m3.setRandom(); const MatrixType& m3c(m3); VERIFY(is_same_type(m3c.template triangularView(), m3.template triangularView().template conjugateIf())); VERIFY(is_same_type(m3c.template triangularView().conjugate(), m3.template triangularView().template conjugateIf())); VERIFY_IS_APPROX(m3.template triangularView().template conjugateIf().toDenseMatrix(), m3.conjugate().template triangularView().toDenseMatrix()); VERIFY_IS_APPROX(m3.template triangularView().template conjugateIf().toDenseMatrix(), m3.template triangularView().toDenseMatrix()); VERIFY(is_same_type(m3c.template selfadjointView(), m3.template selfadjointView().template conjugateIf())); VERIFY(is_same_type(m3c.template selfadjointView().conjugate(), m3.template selfadjointView().template conjugateIf())); VERIFY_IS_APPROX(m3.template selfadjointView().template conjugateIf().toDenseMatrix(), m3.conjugate().template selfadjointView().toDenseMatrix()); VERIFY_IS_APPROX(m3.template selfadjointView().template conjugateIf().toDenseMatrix(), m3.template selfadjointView().toDenseMatrix()); } template void triangular_rect(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), r1(rows, cols), r2(rows, cols); MatrixType m1up = m1.template triangularView(); MatrixType m2up = m2.template triangularView(); if (rows > 1 && cols > 1) { VERIFY(m1up.isUpperTriangular()); VERIFY(m2up.transpose().isLowerTriangular()); VERIFY(!m2.isLowerTriangular()); } // test overloaded operator+= r1.setZero(); r2.setZero(); r1.template triangularView() += m1; r2 += m1up; VERIFY_IS_APPROX(r1, r2); // test overloaded operator= m1.setZero(); m1.template triangularView() = 3 * m2; m3 = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView().toDenseMatrix(), m1); m1.setZero(); m1.template triangularView() = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView().toDenseMatrix(), m1); m1.setZero(); m1.template triangularView() = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView().toDenseMatrix(), m1); m1.setZero(); m1.template triangularView() = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView().toDenseMatrix(), m1); m1.setRandom(); m2 = m1.template triangularView(); VERIFY(m2.isUpperTriangular()); VERIFY(!m2.isLowerTriangular()); m2 = m1.template triangularView(); VERIFY(m2.isUpperTriangular()); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); m2 = m1.template triangularView(); VERIFY(m2.isUpperTriangular()); m2.diagonal().array() -= Scalar(1); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); m2 = m1.template triangularView(); VERIFY(m2.isLowerTriangular()); VERIFY(!m2.isUpperTriangular()); m2 = m1.template triangularView(); VERIFY(m2.isLowerTriangular()); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); m2 = m1.template triangularView(); VERIFY(m2.isLowerTriangular()); m2.diagonal().array() -= Scalar(1); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); // test swap m1.setOnes(); m2.setZero(); m2.template triangularView().swap(m1.template triangularView()); m3.setZero(); m3.template triangularView().setOnes(); VERIFY_IS_APPROX(m2, m3); } void bug_159() { Matrix3d m = Matrix3d::Random().triangularView(); EIGEN_UNUSED_VARIABLE(m) } EIGEN_DECLARE_TEST(triangular) { int maxsize = (std::min)(EIGEN_TEST_MAX_SIZE, 20); for (int i = 0; i < g_repeat; i++) { int r = internal::random(2, maxsize); TEST_SET_BUT_UNUSED_VARIABLE(r) int c = internal::random(2, maxsize); TEST_SET_BUT_UNUSED_VARIABLE(c) CALL_SUBTEST_1(triangular_square(Matrix())); CALL_SUBTEST_2(triangular_square(Matrix())); CALL_SUBTEST_3(triangular_square(Matrix3d())); CALL_SUBTEST_4(triangular_square(Matrix, 8, 8>())); CALL_SUBTEST_5(triangular_square(MatrixXcd(r, r))); CALL_SUBTEST_6(triangular_square(Matrix(r, r))); CALL_SUBTEST_7(triangular_rect(Matrix())); CALL_SUBTEST_8(triangular_rect(Matrix())); CALL_SUBTEST_9(triangular_rect(MatrixXcf(r, c))); CALL_SUBTEST_5(triangular_rect(MatrixXcd(r, c))); CALL_SUBTEST_6(triangular_rect(Matrix(r, c))); CALL_SUBTEST_100(triangular_deprecated(Matrix())); CALL_SUBTEST_100(triangular_deprecated(MatrixXd(r, c))); } CALL_SUBTEST_1(bug_159()); }