// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" /** ZHEMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix. */ EIGEN_BLAS_FUNC(hemv) (const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) { typedef void (*functype)(int, const Scalar *, int, const Scalar *, Scalar *, Scalar); static const functype func[2] = { // array index: UP (Eigen::internal::selfadjoint_matrix_vector_product::run), // array index: LO (Eigen::internal::selfadjoint_matrix_vector_product::run), }; const Scalar *a = reinterpret_cast(pa); const Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); Scalar alpha = *reinterpret_cast(palpha); Scalar beta = *reinterpret_cast(pbeta); // check arguments int info = 0; if (UPLO(*uplo) == INVALID) info = 1; else if (*n < 0) info = 2; else if (*lda < std::max(1, *n)) info = 5; else if (*incx == 0) info = 7; else if (*incy == 0) info = 10; if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMV ", &info); if (*n == 0) return; const Scalar *actual_x = get_compact_vector(x, *n, *incx); Scalar *actual_y = get_compact_vector(y, *n, *incy); if (beta != Scalar(1)) { if (beta == Scalar(0)) make_vector(actual_y, *n).setZero(); else make_vector(actual_y, *n) *= beta; } if (alpha != Scalar(0)) { int code = UPLO(*uplo); if (code >= 2 || func[code] == 0) return; func[code](*n, a, *lda, actual_x, actual_y, alpha); } if (actual_x != x) delete[] actual_x; if (actual_y != y) delete[] copy_back(actual_y, y, *n, *incy); } /** ZHBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian band matrix, with k super-diagonals. */ // EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) // { // return 1; // } /** ZHPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix, supplied in packed form. */ // EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar // *beta, RealScalar *y, int *incy) // { // return 1; // } /** ZHPR performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix, supplied in packed form. */ EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) { typedef void (*functype)(int, Scalar *, const Scalar *, RealScalar); static const functype func[2] = { // array index: UP (Eigen::internal::selfadjoint_packed_rank1_update::run), // array index: LO (Eigen::internal::selfadjoint_packed_rank1_update::run), }; Scalar *x = reinterpret_cast(px); Scalar *ap = reinterpret_cast(pap); RealScalar alpha = *palpha; int info = 0; if (UPLO(*uplo) == INVALID) info = 1; else if (*n < 0) info = 2; else if (*incx == 0) info = 5; if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR ", &info); if (alpha == Scalar(0)) return; Scalar *x_cpy = get_compact_vector(x, *n, *incx); int code = UPLO(*uplo); if (code >= 2 || func[code] == 0) return; func[code](*n, ap, x_cpy, alpha); if (x_cpy != x) delete[] x_cpy; } /** ZHPR2 performs the hermitian rank 2 operation * * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n hermitian matrix, supplied in packed form. */ EIGEN_BLAS_FUNC(hpr2) (char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) { typedef void (*functype)(int, Scalar *, const Scalar *, const Scalar *, Scalar); static const functype func[2] = { // array index: UP (Eigen::internal::packed_rank2_update_selector::run), // array index: LO (Eigen::internal::packed_rank2_update_selector::run), }; Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); Scalar *ap = reinterpret_cast(pap); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if (UPLO(*uplo) == INVALID) info = 1; else if (*n < 0) info = 2; else if (*incx == 0) info = 5; else if (*incy == 0) info = 7; if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR2 ", &info); if (alpha == Scalar(0)) return; Scalar *x_cpy = get_compact_vector(x, *n, *incx); Scalar *y_cpy = get_compact_vector(y, *n, *incy); int code = UPLO(*uplo); if (code >= 2 || func[code] == 0) return; func[code](*n, ap, x_cpy, y_cpy, alpha); if (x_cpy != x) delete[] x_cpy; if (y_cpy != y) delete[] y_cpy; } /** ZHER performs the hermitian rank 1 operation * * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. */ EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) { typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, const Scalar &); static const functype func[2] = { // array index: UP (Eigen::selfadjoint_rank1_update::run), // array index: LO (Eigen::selfadjoint_rank1_update::run), }; Scalar *x = reinterpret_cast(px); Scalar *a = reinterpret_cast(pa); RealScalar alpha = *reinterpret_cast(palpha); int info = 0; if (UPLO(*uplo) == INVALID) info = 1; else if (*n < 0) info = 2; else if (*incx == 0) info = 5; else if (*lda < std::max(1, *n)) info = 7; if (info) return xerbla_(SCALAR_SUFFIX_UP "HER ", &info); if (alpha == RealScalar(0)) return; Scalar *x_cpy = get_compact_vector(x, *n, *incx); int code = UPLO(*uplo); if (code >= 2 || func[code] == 0) return; func[code](*n, a, *lda, x_cpy, x_cpy, alpha); matrix(a, *n, *n, *lda).diagonal().imag().setZero(); if (x_cpy != x) delete[] x_cpy; } /** ZHER2 performs the hermitian rank 2 operation * * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n hermitian matrix. */ EIGEN_BLAS_FUNC(her2) (char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, Scalar); static const functype func[2] = { // array index: UP (Eigen::internal::rank2_update_selector::run), // array index: LO (Eigen::internal::rank2_update_selector::run), }; Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); Scalar *a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if (UPLO(*uplo) == INVALID) info = 1; else if (*n < 0) info = 2; else if (*incx == 0) info = 5; else if (*incy == 0) info = 7; else if (*lda < std::max(1, *n)) info = 9; if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2 ", &info); if (alpha == Scalar(0)) return; Scalar *x_cpy = get_compact_vector(x, *n, *incx); Scalar *y_cpy = get_compact_vector(y, *n, *incy); int code = UPLO(*uplo); if (code >= 2 || func[code] == 0) return; func[code](*n, a, *lda, x_cpy, y_cpy, alpha); matrix(a, *n, *n, *lda).diagonal().imag().setZero(); if (x_cpy != x) delete[] x_cpy; if (y_cpy != y) delete[] y_cpy; } /** ZGERU performs the rank 1 operation * * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ EIGEN_BLAS_FUNC(geru) (int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); Scalar *a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if (*m < 0) info = 1; else if (*n < 0) info = 2; else if (*incx == 0) info = 5; else if (*incy == 0) info = 7; else if (*lda < std::max(1, *m)) info = 9; if (info) return xerbla_(SCALAR_SUFFIX_UP "GERU ", &info); if (alpha == Scalar(0)) return; Scalar *x_cpy = get_compact_vector(x, *m, *incx); Scalar *y_cpy = get_compact_vector(y, *n, *incy); Eigen::internal::general_rank1_update::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); if (x_cpy != x) delete[] x_cpy; if (y_cpy != y) delete[] y_cpy; } /** ZGERC performs the rank 1 operation * * A := alpha*x*conjg( y' ) + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ EIGEN_BLAS_FUNC(gerc) (int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); Scalar *a = reinterpret_cast(pa); Scalar alpha = *reinterpret_cast(palpha); int info = 0; if (*m < 0) info = 1; else if (*n < 0) info = 2; else if (*incx == 0) info = 5; else if (*incy == 0) info = 7; else if (*lda < std::max(1, *m)) info = 9; if (info) return xerbla_(SCALAR_SUFFIX_UP "GERC ", &info); if (alpha == Scalar(0)) return; Scalar *x_cpy = get_compact_vector(x, *m, *incx); Scalar *y_cpy = get_compact_vector(y, *n, *incy); Eigen::internal::general_rank1_update::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); if (x_cpy != x) delete[] x_cpy; if (y_cpy != y) delete[] y_cpy; }