// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #include "main.h" #include <Eigen/QR> #ifdef HAS_GSL #include "gsl_helper.h" #endif template<typename MatrixType> void eigensolver(const MatrixType& m) { /* this test covers the following files: EigenSolver.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; // RealScalar largerEps = 10*test_precision<RealScalar>(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; EigenSolver<MatrixType> ei0(symmA); VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); EigenSolver<MatrixType> ei1(a); VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); } template<typename MatrixType> void eigensolver_verify_assert() { MatrixType tmp; EigenSolver<MatrixType> eig; VERIFY_RAISES_ASSERT(eig.eigenvectors()) VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()) VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()) VERIFY_RAISES_ASSERT(eig.eigenvalues()) } void test_eigensolver_generic() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( eigensolver(Matrix4f()) ); CALL_SUBTEST( eigensolver(MatrixXd(17,17)) ); // some trivial but implementation-wise tricky cases CALL_SUBTEST( eigensolver(MatrixXd(1,1)) ); CALL_SUBTEST( eigensolver(MatrixXd(2,2)) ); CALL_SUBTEST( eigensolver(Matrix<double,1,1>()) ); CALL_SUBTEST( eigensolver(Matrix<double,2,2>()) ); } CALL_SUBTEST( eigensolver_verify_assert<Matrix3f>() ); CALL_SUBTEST( eigensolver_verify_assert<Matrix3d>() ); CALL_SUBTEST( eigensolver_verify_assert<MatrixXf>() ); CALL_SUBTEST( eigensolver_verify_assert<MatrixXd>() ); }