// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_HOMOGENEOUS_H #define EIGEN_HOMOGENEOUS_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class Homogeneous * * \brief Expression of one (or a set of) homogeneous vector(s) * * \param MatrixType the type of the object in which we are making homogeneous * * This class represents an expression of one (or a set of) homogeneous vector(s). * It is the return type of MatrixBase::homogeneous() and most of the time * this is the only way it is used. * * \sa MatrixBase::homogeneous() */ namespace internal { template struct traits > : traits { typedef typename traits::StorageKind StorageKind; typedef typename ref_selector::type MatrixTypeNested; typedef std::remove_reference_t MatrixTypeNested_; enum { RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, RowsAtCompileTime = Direction == Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, ColsAtCompileTime = Direction == Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, TmpFlags = MatrixTypeNested_::Flags & HereditaryBits, Flags = ColsAtCompileTime == 1 ? (TmpFlags & ~RowMajorBit) : RowsAtCompileTime == 1 ? (TmpFlags | RowMajorBit) : TmpFlags }; }; template struct homogeneous_left_product_impl; template struct homogeneous_right_product_impl; } // end namespace internal template class Homogeneous : public MatrixBase >, internal::no_assignment_operator { public: typedef MatrixType NestedExpression; enum { Direction = Direction_ }; typedef MatrixBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {} EIGEN_DEVICE_FUNC constexpr Index rows() const noexcept { return m_matrix.rows() + (int(Direction) == Vertical ? 1 : 0); } EIGEN_DEVICE_FUNC constexpr Index cols() const noexcept { return m_matrix.cols() + (int(Direction) == Horizontal ? 1 : 0); } EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } template EIGEN_DEVICE_FUNC inline const Product operator*(const MatrixBase& rhs) const { eigen_assert(int(Direction) == Horizontal); return Product(*this, rhs.derived()); } template friend EIGEN_DEVICE_FUNC inline const Product operator*(const MatrixBase& lhs, const Homogeneous& rhs) { eigen_assert(int(Direction) == Vertical); return Product(lhs.derived(), rhs); } template friend EIGEN_DEVICE_FUNC inline const Product, Homogeneous> operator*( const Transform& lhs, const Homogeneous& rhs) { eigen_assert(int(Direction) == Vertical); return Product, Homogeneous>(lhs, rhs); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of::type redux( const Func& func) const { return func(m_matrix.redux(func), Scalar(1)); } protected: typename MatrixType::Nested m_matrix; }; /** \geometry_module \ingroup Geometry_Module * * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as * the last coefficient. * * This can be used to convert affine coordinates to homogeneous coordinates. * * \only_for_vectors * * Example: \include MatrixBase_homogeneous.cpp * Output: \verbinclude MatrixBase_homogeneous.out * * \sa VectorwiseOp::homogeneous(), class Homogeneous */ template EIGEN_DEVICE_FUNC inline typename MatrixBase::HomogeneousReturnType MatrixBase::homogeneous() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return HomogeneousReturnType(derived()); } /** \geometry_module \ingroup Geometry_Module * * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of * the matrix. * * This can be used to convert affine coordinates to homogeneous coordinates. * * Example: \include VectorwiseOp_homogeneous.cpp * Output: \verbinclude VectorwiseOp_homogeneous.out * * \sa MatrixBase::homogeneous(), class Homogeneous */ template EIGEN_DEVICE_FUNC inline Homogeneous VectorwiseOp::homogeneous() const { return HomogeneousReturnType(_expression()); } /** \geometry_module \ingroup Geometry_Module * * \brief homogeneous normalization * * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. * * This can be used to convert homogeneous coordinates to affine coordinates. * * It is essentially a shortcut for: * \code this->head(this->size()-1)/this->coeff(this->size()-1); \endcode * * Example: \include MatrixBase_hnormalized.cpp * Output: \verbinclude MatrixBase_hnormalized.out * * \sa VectorwiseOp::hnormalized() */ template EIGEN_DEVICE_FUNC inline const typename MatrixBase::HNormalizedReturnType MatrixBase::hnormalized() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return ConstStartMinusOne(derived(), 0, 0, ColsAtCompileTime == 1 ? size() - 1 : 1, ColsAtCompileTime == 1 ? 1 : size() - 1) / coeff(size() - 1); } /** \geometry_module \ingroup Geometry_Module * * \brief column or row-wise homogeneous normalization * * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last * coefficient of each column (or row). * * This can be used to convert homogeneous coordinates to affine coordinates. * * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. * * Example: \include DirectionWise_hnormalized.cpp * Output: \verbinclude DirectionWise_hnormalized.out * * \sa MatrixBase::hnormalized() */ template EIGEN_DEVICE_FUNC inline const typename VectorwiseOp::HNormalizedReturnType VectorwiseOp::hnormalized() const { return HNormalized_Block(_expression(), 0, 0, Direction == Vertical ? _expression().rows() - 1 : _expression().rows(), Direction == Horizontal ? _expression().cols() - 1 : _expression().cols()) .cwiseQuotient(Replicate < HNormalized_Factors, Direction == Vertical ? HNormalized_SizeMinusOne : 1, Direction == Horizontal ? HNormalized_SizeMinusOne : 1 > (HNormalized_Factors(_expression(), Direction == Vertical ? _expression().rows() - 1 : 0, Direction == Horizontal ? _expression().cols() - 1 : 0, Direction == Vertical ? 1 : _expression().rows(), Direction == Horizontal ? 1 : _expression().cols()), Direction == Vertical ? _expression().rows() - 1 : 1, Direction == Horizontal ? _expression().cols() - 1 : 1)); } namespace internal { template struct take_matrix_for_product { typedef MatrixOrTransformType type; EIGEN_DEVICE_FUNC static const type& run(const type& x) { return x; } }; template struct take_matrix_for_product > { typedef Transform TransformType; typedef std::add_const_t type; EIGEN_DEVICE_FUNC static type run(const TransformType& x) { return x.affine(); } }; template struct take_matrix_for_product > { typedef Transform TransformType; typedef typename TransformType::MatrixType type; EIGEN_DEVICE_FUNC static const type& run(const TransformType& x) { return x.matrix(); } }; template struct traits, Lhs> > { typedef typename take_matrix_for_product::type LhsMatrixType; typedef remove_all_t MatrixTypeCleaned; typedef remove_all_t LhsMatrixTypeCleaned; typedef typename make_proper_matrix_type< typename traits::Scalar, LhsMatrixTypeCleaned::RowsAtCompileTime, MatrixTypeCleaned::ColsAtCompileTime, MatrixTypeCleaned::PlainObject::Options, LhsMatrixTypeCleaned::MaxRowsAtCompileTime, MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; }; template struct homogeneous_left_product_impl, Lhs> : public ReturnByValue, Lhs> > { typedef typename traits::LhsMatrixType LhsMatrixType; typedef remove_all_t LhsMatrixTypeCleaned; typedef remove_all_t LhsMatrixTypeNested; EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) : m_lhs(take_matrix_for_product::run(lhs)), m_rhs(rhs) {} EIGEN_DEVICE_FUNC constexpr Index rows() const noexcept { return m_lhs.rows(); } EIGEN_DEVICE_FUNC constexpr Index cols() const noexcept { return m_rhs.cols(); } template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = Block < const LhsMatrixTypeNested, LhsMatrixTypeNested::RowsAtCompileTime, LhsMatrixTypeNested::ColsAtCompileTime == Dynamic ? Dynamic : LhsMatrixTypeNested::ColsAtCompileTime - 1 > (m_lhs, 0, 0, m_lhs.rows(), m_lhs.cols() - 1) * m_rhs; dst += m_lhs.col(m_lhs.cols() - 1).rowwise().template replicate(m_rhs.cols()); } typename LhsMatrixTypeCleaned::Nested m_lhs; typename MatrixType::Nested m_rhs; }; template struct traits, Rhs> > { typedef typename make_proper_matrix_type::Scalar, MatrixType::RowsAtCompileTime, Rhs::ColsAtCompileTime, MatrixType::PlainObject::Options, MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime>::type ReturnType; }; template struct homogeneous_right_product_impl, Rhs> : public ReturnByValue, Rhs> > { typedef remove_all_t RhsNested; EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {} EIGEN_DEVICE_FUNC constexpr Index rows() const noexcept { return m_lhs.rows(); } EIGEN_DEVICE_FUNC constexpr Index cols() const noexcept { return m_rhs.cols(); } template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = m_lhs * Block < const RhsNested, RhsNested::RowsAtCompileTime == Dynamic ? Dynamic : RhsNested::RowsAtCompileTime - 1, RhsNested::ColsAtCompileTime > (m_rhs, 0, 0, m_rhs.rows() - 1, m_rhs.cols()); dst += m_rhs.row(m_rhs.rows() - 1).colwise().template replicate(m_lhs.rows()); } typename MatrixType::Nested m_lhs; typename Rhs::Nested m_rhs; }; template struct evaluator_traits > { typedef typename storage_kind_to_evaluator_kind::Kind Kind; typedef HomogeneousShape Shape; }; template <> struct AssignmentKind { typedef Dense2Dense Kind; }; template struct unary_evaluator, IndexBased> : evaluator::PlainObject> { typedef Homogeneous XprType; typedef typename XprType::PlainObject PlainObject; typedef evaluator Base; EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : Base(), m_temp(op) { internal::construct_at(this, m_temp); } protected: PlainObject m_temp; }; // dense = homogeneous template struct Assignment, internal::assign_op, Dense2Dense> { typedef Homogeneous SrcXprType; EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const internal::assign_op&) { Index dstRows = src.rows(); Index dstCols = src.cols(); if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); dst.template topRows(src.nestedExpression().rows()) = src.nestedExpression(); dst.row(dst.rows() - 1).setOnes(); } }; // dense = homogeneous template struct Assignment, internal::assign_op, Dense2Dense> { typedef Homogeneous SrcXprType; EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, const internal::assign_op&) { Index dstRows = src.rows(); Index dstCols = src.cols(); if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); dst.template leftCols(src.nestedExpression().cols()) = src.nestedExpression(); dst.col(dst.cols() - 1).setOnes(); } }; template struct generic_product_impl, Rhs, HomogeneousShape, DenseShape, ProductTag> { template EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous& lhs, const Rhs& rhs) { homogeneous_right_product_impl, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); } }; template struct homogeneous_right_product_refactoring_helper { enum { Dim = Lhs::ColsAtCompileTime, Rows = Lhs::RowsAtCompileTime }; typedef typename Rhs::template ConstNRowsBlockXpr::Type LinearBlockConst; typedef std::remove_const_t LinearBlock; typedef typename Rhs::ConstRowXpr ConstantColumn; typedef Replicate ConstantBlock; typedef Product LinearProduct; typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; }; template struct product_evaluator, ProductTag, HomogeneousShape, DenseShape> : public evaluator< typename homogeneous_right_product_refactoring_helper::Xpr> { typedef Product XprType; typedef homogeneous_right_product_refactoring_helper helper; typedef typename helper::ConstantBlock ConstantBlock; typedef typename helper::Xpr RefactoredXpr; typedef evaluator Base; EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs().nestedExpression().lazyProduct( xpr.rhs().template topRows(xpr.lhs().nestedExpression().cols())) + ConstantBlock(xpr.rhs().row(xpr.rhs().rows() - 1), xpr.lhs().rows(), 1)) {} }; template struct generic_product_impl, DenseShape, HomogeneousShape, ProductTag> { template EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) { homogeneous_left_product_impl, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); } }; // TODO: the following specialization is to address a regression from 3.2 to 3.3 // In the future, this path should be optimized. template struct generic_product_impl, TriangularShape, HomogeneousShape, ProductTag> { template static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) { dst.noalias() = lhs * rhs.eval(); } }; template struct homogeneous_left_product_refactoring_helper { enum { Dim = Rhs::RowsAtCompileTime, Cols = Rhs::ColsAtCompileTime }; typedef typename Lhs::template ConstNColsBlockXpr::Type LinearBlockConst; typedef std::remove_const_t LinearBlock; typedef typename Lhs::ConstColXpr ConstantColumn; typedef Replicate ConstantBlock; typedef Product LinearProduct; typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; }; template struct product_evaluator, ProductTag, DenseShape, HomogeneousShape> : public evaluator::Xpr> { typedef Product XprType; typedef homogeneous_left_product_refactoring_helper helper; typedef typename helper::ConstantBlock ConstantBlock; typedef typename helper::Xpr RefactoredXpr; typedef evaluator Base; EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs() .template leftCols(xpr.rhs().nestedExpression().rows()) .lazyProduct(xpr.rhs().nestedExpression()) + ConstantBlock(xpr.lhs().col(xpr.lhs().cols() - 1), 1, xpr.rhs().cols())) {} }; template struct generic_product_impl, Homogeneous, DenseShape, HomogeneousShape, ProductTag> { typedef Transform TransformType; template EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous& rhs) { homogeneous_left_product_impl, TransformType>(lhs, rhs.nestedExpression()) .evalTo(dst); } }; template struct permutation_matrix_product : public permutation_matrix_product {}; } // end namespace internal } // end namespace Eigen #endif // EIGEN_HOMOGENEOUS_H