// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void product_selfadjoint(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RowVectorType; typedef Matrix RhsMatrixType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3; VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), v3(rows); RowVectorType r1 = RowVectorType::Random(rows), r2 = RowVectorType::Random(rows); RhsMatrixType m4 = RhsMatrixType::Random(rows,10); Scalar s1 = ei_random(), s2 = ei_random(), s3 = ei_random(); m1 = (m1.adjoint() + m1).eval(); // lower m2 = m1.template triangularView(); VERIFY_IS_APPROX(v3 = (s1*m2).template selfadjointView() * (s2*v1), (s1*m1) * (s2*v1)); VERIFY_IS_APPROX(v3 = (s1*m2.conjugate()).template selfadjointView() * (s2*v1), (s1*m1.conjugate()) * (s2*v1)); VERIFY_IS_APPROX(v3 = (s1*m2).template selfadjointView() * (s2*m4.col(1)), (s1*m1) * (s2*m4.col(1))); VERIFY_IS_APPROX(v3 = (s1*m2).template selfadjointView() * (s2*v1.conjugate()), (s1*m1) * (s2*v1.conjugate())); VERIFY_IS_APPROX(v3 = (s1*m2.conjugate()).template selfadjointView() * (s2*v1.conjugate()), (s1*m1.conjugate()) * (s2*v1.conjugate())); // upper m2 = m1.template triangularView(); VERIFY_IS_APPROX(v3 = (s1*m2).template selfadjointView() * (s2*v1), (s1*m1) * (s2*v1)); VERIFY_IS_APPROX(v3 = (s1*m2.conjugate()).template selfadjointView() * (s2*v1), (s1*m1.conjugate()) * (s2*v1)); VERIFY_IS_APPROX(v3 = (s1*m2.adjoint()).template selfadjointView() * (s2*v1), (s1*m1.adjoint()) * (s2*v1)); VERIFY_IS_APPROX(v3 = (s1*m2.transpose()).template selfadjointView() * (s2*v1), (s1*m1.transpose()) * (s2*v1)); VERIFY_IS_APPROX(v3 = (s1*m2).template selfadjointView() * (s2*v1.conjugate()), (s1*m1) * (s2*v1.conjugate())); VERIFY_IS_APPROX(v3 = (s1*m2.conjugate()).template selfadjointView() * (s2*v1.conjugate()), (s1*m1.conjugate()) * (s2*v1.conjugate())); // rank2 update m2 = m1.template triangularView(); m2.template selfadjointView().rank2update(v1,v2); VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView().toDense()); m2 = m1.template triangularView(); m2.template selfadjointView().rank2update(-v1,s2*v2,s3); VERIFY_IS_APPROX(m2, (m1 + (-s2*s3) * (v1 * v2.adjoint()+ v2 * v1.adjoint())).template triangularView().toDense()); m2 = m1.template triangularView(); m2.template selfadjointView().rank2update(-r1.adjoint(),r2.adjoint()*s3,s1); VERIFY_IS_APPROX(m2, (m1 + (-s3*s1) * (r1.adjoint() * r2 + r2.adjoint() * r1)).template triangularView().toDense()); if (rows>1) { m2 = m1.template triangularView(); m2.block(1,1,rows-1,cols-1).template selfadjointView().rank2update(v1.end(rows-1),v2.start(cols-1)); m3 = m1; m3.block(1,1,rows-1,cols-1) += v1.end(rows-1) * v2.start(cols-1).adjoint()+ v2.start(cols-1) * v1.end(rows-1).adjoint(); VERIFY_IS_APPROX(m2, m3.template triangularView().toDense()); } } template void symm(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix Rhs1; typedef Matrix Rhs2; typedef Matrix Rhs3; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols); m1 = (m1+m1.adjoint()).eval(); Rhs1 rhs1 = Rhs1::Random(cols, ei_random(1,320)), rhs12, rhs13; Rhs2 rhs2 = Rhs2::Random(ei_random(1,320), rows), rhs22, rhs23; Rhs3 rhs3 = Rhs3::Random(cols, ei_random(1,320)), rhs32, rhs33; Scalar s1 = ei_random(), s2 = ei_random(); m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView() * (s2*rhs1), rhs13 = (s1*m1) * (s2*rhs1)); m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView() * (s2*rhs1), rhs13 = (s1*m1) * (s2*rhs1)); m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs22 = (s1*m2).template selfadjointView() * (s2*rhs2.adjoint()), rhs23 = (s1*m1) * (s2*rhs2.adjoint())); m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs22 = (s1*m2).template selfadjointView() * (s2*rhs2.adjoint()), rhs23 = (s1*m1) * (s2*rhs2.adjoint())); m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs22 = (s1*m2.adjoint()).template selfadjointView() * (s2*rhs2.adjoint()), rhs23 = (s1*m1.adjoint()) * (s2*rhs2.adjoint())); // test row major = <...> m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs32 = (s1*m2).template selfadjointView() * (s2*rhs3), rhs33 = (s1*m1) * (s2 * rhs3)); m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs32 = (s1*m2.adjoint()).template selfadjointView() * (s2*rhs3).conjugate(), rhs33 = (s1*m1.adjoint()) * (s2*rhs3).conjugate()); // test matrix * selfadjoint m2 = m1.template triangularView(); VERIFY_IS_APPROX(rhs22 = (rhs2) * (m2).template selfadjointView(), rhs23 = (rhs2) * (m1)); VERIFY_IS_APPROX(rhs22 = (s2*rhs2) * (s1*m2).template selfadjointView(), rhs23 = (s2*rhs2) * (s1*m1)); } void test_product_selfadjoint() { for(int i = 0; i < g_repeat ; i++) { CALL_SUBTEST( product_selfadjoint(Matrix()) ); CALL_SUBTEST( product_selfadjoint(Matrix()) ); CALL_SUBTEST( product_selfadjoint(Matrix3d()) ); CALL_SUBTEST( product_selfadjoint(MatrixXcf(4, 4)) ); CALL_SUBTEST( product_selfadjoint(MatrixXcd(21,21)) ); CALL_SUBTEST( product_selfadjoint(MatrixXd(14,14)) ); CALL_SUBTEST( product_selfadjoint(Matrix(17,17)) ); CALL_SUBTEST( product_selfadjoint(Matrix,Dynamic,Dynamic,RowMajor>(19, 19)) ); } for(int i = 0; i < g_repeat ; i++) { int s; s = ei_random(10,320); CALL_SUBTEST( symm(MatrixXf(s, s)) ); s = ei_random(10,320); CALL_SUBTEST( symm(MatrixXcd(s, s)) ); } }