// Small bench routine for Eigen available in Eigen // (C) Desire NUENTSA WAKAM, INRIA #include #include #include #include #include #include #include #include // #include #include // #include #include #include using namespace std; using namespace Eigen; int main(int argc, char **args) { SparseMatrix A; typedef SparseMatrix::Index Index; typedef Matrix DenseMatrix; typedef Matrix DenseRhs; VectorXd b, x, tmp; BenchTimer timer, totaltime; // SparseLU > solver; // SuperLU > solver; ConjugateGradient, Lower, IncompleteCholesky > solver; ifstream matrix_file; string line; int n; // Set parameters // solver.iparm(IPARM_THREAD_NBR) = 4; /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ if (argc < 2) assert(false && "please, give the matrix market file "); timer.start(); totaltime.start(); loadMarket(A, args[1]); cout << "End charging matrix " << endl; bool iscomplex = false, isvector = false; int sym; getMarketHeader(args[1], sym, iscomplex, isvector); if (iscomplex) { cout << " Not for complex matrices \n"; return -1; } if (isvector) { cout << "The provided file is not a matrix file\n"; return -1; } if (sym != 0) { // symmetric matrices, only the lower part is stored SparseMatrix temp; temp = A; A = temp.selfadjointView(); } timer.stop(); n = A.cols(); // ====== TESTS FOR SPARSE TUTORIAL ====== // cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl; // SparseMatrix mat1(A); // SparseMatrix mat2; // cout << " norm of A " << mat1.norm() << endl; ; // PermutationMatrix perm(n); // perm.resize(n,1); // perm.indices().setLinSpaced(n, 0, n-1); // mat2 = perm * mat1; // mat.subrows(); // mat2.resize(n,n); // mat2.reserve(10); // mat2.setConstant(); // std::cout<< "NORM " << mat1.squaredNorm()<< endl; cout << "Time to load the matrix " << timer.value() << endl; /* Fill the right hand side */ // solver.set_restart(374); if (argc > 2) loadMarketVector(b, args[2]); else { b.resize(n); tmp.resize(n); // tmp.setRandom(); for (int i = 0; i < n; i++) tmp(i) = i; b = A * tmp; } // Scaling > scal; // scal.computeRef(A); // b = scal.LeftScaling().cwiseProduct(b); /* Compute the factorization */ cout << "Starting the factorization " << endl; timer.reset(); timer.start(); cout << "Size of Input Matrix " << b.size() << "\n\n"; cout << "Rows and columns " << A.rows() << " " << A.cols() << "\n"; solver.compute(A); // solver.analyzePattern(A); // solver.factorize(A); if (solver.info() != Success) { std::cout << "The solver failed \n"; return -1; } timer.stop(); float time_comp = timer.value(); cout << " Compute Time " << time_comp << endl; timer.reset(); timer.start(); x = solver.solve(b); // x = scal.RightScaling().cwiseProduct(x); timer.stop(); float time_solve = timer.value(); cout << " Time to solve " << time_solve << endl; /* Check the accuracy */ VectorXd tmp2 = b - A * x; double tempNorm = tmp2.norm() / b.norm(); cout << "Relative norm of the computed solution : " << tempNorm << "\n"; // cout << "Iterations : " << solver.iterations() << "\n"; totaltime.stop(); cout << "Total time " << totaltime.value() << "\n"; // std::cout<