// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" struct scalar_norm1_op { typedef RealScalar result_type; inline RealScalar operator()(const Scalar &a) const { return Eigen::numext::norm1(a); } }; namespace Eigen { namespace internal { template <> struct functor_traits { enum { Cost = 3 * NumTraits::AddCost, PacketAccess = 0 }; }; } // namespace internal } // namespace Eigen // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(asum))(int *n, RealScalar *px, int *incx) { // std::cerr << "__asum " << *n << " " << *incx << "\n"; Complex *x = reinterpret_cast(px); if (*n <= 0) return 0; if (*incx == 1) return make_vector(x, *n).unaryExpr().sum(); else return make_vector(x, *n, std::abs(*incx)).unaryExpr().sum(); } extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, RealScalar *px, int *incx) { if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); Eigen::DenseIndex ret; if (*incx == 1) make_vector(x, *n).unaryExpr().maxCoeff(&ret); else make_vector(x, *n, std::abs(*incx)).unaryExpr().maxCoeff(&ret); return int(ret) + 1; } extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, RealScalar *px, int *incx) { if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); Eigen::DenseIndex ret; if (*incx == 1) make_vector(x, *n).unaryExpr().minCoeff(&ret); else make_vector(x, *n, std::abs(*incx)).unaryExpr().minCoeff(&ret); return int(ret) + 1; } // computes a dot product of a conjugated vector with another vector. EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) { // std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; Scalar *res = reinterpret_cast(pres); if (*n <= 0) { *res = Scalar(0); return; } Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); if (*incx == 1 && *incy == 1) *res = (make_vector(x, *n).dot(make_vector(y, *n))); else if (*incx > 0 && *incy > 0) *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy))); else if (*incx < 0 && *incy > 0) *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy))); else if (*incx > 0 && *incy < 0) *res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse())); else if (*incx < 0 && *incy < 0) *res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse())); } // computes a vector-vector dot product without complex conjugation. EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) { Scalar *res = reinterpret_cast(pres); if (*n <= 0) { *res = Scalar(0); return; } Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); if (*incx == 1 && *incy == 1) *res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum(); else if (*incx > 0 && *incy > 0) *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum(); else if (*incx < 0 && *incy > 0) *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum(); else if (*incx > 0 && *incy < 0) *res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); else if (*incx < 0 && *incy < 0) *res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); } extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(nrm2))(int *n, RealScalar *px, int *incx) { // std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); if (*incx == 1) return make_vector(x, *n).stableNorm(); return make_vector(x, *n, *incx).stableNorm(); } EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot)) (int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) { if (*n <= 0) return; Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); RealScalar c = *pc; RealScalar s = *ps; StridedVectorType vx(make_vector(x, *n, std::abs(*incx))); StridedVectorType vy(make_vector(y, *n, std::abs(*incy))); Eigen::Reverse rvx(vx); Eigen::Reverse rvy(vy); // TODO implement mixed real-scalar rotations if (*incx < 0 && *incy > 0) Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation(c, s)); else if (*incx > 0 && *incy < 0) Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation(c, s)); else Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation(c, s)); } EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) { if (*n <= 0) return; Scalar *x = reinterpret_cast(px); RealScalar alpha = *palpha; // std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; if (*incx == 1) make_vector(x, *n) *= alpha; else make_vector(x, *n, std::abs(*incx)) *= alpha; }