//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out // -DNOGMM -DNOMTL -DCSPARSE // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a #ifndef SIZE #define SIZE 100000 #endif #ifndef NBPERROW #define NBPERROW 24 #endif #ifndef REPEAT #define REPEAT 1 #endif #ifndef NOGOOGLE #define EIGEN_GOOGLEHASH_SUPPORT #include <google/sparse_hash_map> #endif #include "BenchSparseUtil.h" #define CHECK_MEM // #define CHECK_MEM std/**/::cout << "check mem\n"; getchar(); #define BENCH(X) \ timer.reset(); \ for (int _j=0; _j<NBTRIES; ++_j) { \ timer.start(); \ for (int _k=0; _k<REPEAT; ++_k) { \ X \ } timer.stop(); } typedef std::vector<Vector2i> Coordinates; typedef std::vector<float> Values; EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals); EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals); int main(int argc, char *argv[]) { int rows = SIZE; int cols = SIZE; bool fullyrand = false; //float density = float(NBPERROW)/float(SIZE); BenchTimer timer; Coordinates coords; Values values; if(fullyrand) { for (int i=0; i<cols*NBPERROW; ++i) { coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1))); values.push_back(ei_random<Scalar>()); } } else { for (int j=0; j<cols; ++j) for (int i=0; i<NBPERROW; ++i) { coords.push_back(Vector2i(ei_random<int>(0,rows-1),j)); values.push_back(ei_random<Scalar>()); } } std::cout << "nnz = " << coords.size() << "\n"; CHECK_MEM // dense matrices #ifdef DENSEMATRIX { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_eigen_dense(coords,values); timer.stop(); std::cout << "Eigen Dense\t" << timer.value() << "\n"; } #endif // eigen sparse matrices if (!fullyrand) { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setinnerrand_eigen(coords,values); timer.stop(); std::cout << "Eigen fillrand\t" << timer.value() << "\n"; } { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_eigen_gnu_hash(coords,values); timer.stop(); std::cout << "Eigen std::map\t" << timer.value() << "\n"; } #ifndef NOGOOGLE { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_eigen_google_dense(coords,values); timer.stop(); std::cout << "Eigen google dense\t" << timer.value() << "\n"; } { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_eigen_google_sparse(coords,values); timer.stop(); std::cout << "Eigen google sparse\t" << timer.value() << "\n"; } #endif #ifndef NOUBLAS { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_ublas_mapped(coords,values); timer.stop(); std::cout << "ublas mapped\t" << timer.value() << "\n"; } { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_ublas_genvec(coords,values); timer.stop(); std::cout << "ublas vecofvec\t" << timer.value() << "\n"; } /*{ timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_ublas_compressed(coords,values); timer.stop(); std::cout << "ublas comp\t" << timer.value() << "\n"; } { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_ublas_coord(coords,values); timer.stop(); std::cout << "ublas coord\t" << timer.value() << "\n"; }*/ #endif // MTL4 #ifndef NOMTL { timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) setrand_mtl(coords,values); timer.stop(); std::cout << "MTL\t" << timer.value() << "\n"; } #endif return 0; } EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals) { using namespace Eigen; SparseMatrix<Scalar> mat(SIZE,SIZE); mat.startFill(2000000/*coords.size()*/); for (int i=0; i<coords.size(); ++i) { mat.fillrand(coords[i].x(), coords[i].y()) = vals[i]; } mat.endFill(); CHECK_MEM; return 0; } EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) { using namespace Eigen; SparseMatrix<Scalar> mat(SIZE,SIZE); { RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat); for (int i=0; i<coords.size(); ++i) { setter(coords[i].x(), coords[i].y()) = vals[i]; } CHECK_MEM; } return 0;//&mat.coeffRef(coords[0].x(), coords[0].y()); } #ifndef NOGOOGLE EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) { using namespace Eigen; SparseMatrix<Scalar> mat(SIZE,SIZE); { RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat); for (int i=0; i<coords.size(); ++i) setter(coords[i].x(), coords[i].y()) = vals[i]; CHECK_MEM; } return 0;//&mat.coeffRef(coords[0].x(), coords[0].y()); } EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) { using namespace Eigen; SparseMatrix<Scalar> mat(SIZE,SIZE); { RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat); for (int i=0; i<coords.size(); ++i) setter(coords[i].x(), coords[i].y()) = vals[i]; CHECK_MEM; } return 0;//&mat.coeffRef(coords[0].x(), coords[0].y()); } #endif #ifndef NOUBLAS EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) { using namespace boost; using namespace boost::numeric; using namespace boost::numeric::ublas; mapped_matrix<Scalar> aux(SIZE,SIZE); for (int i=0; i<coords.size(); ++i) { aux(coords[i].x(), coords[i].y()) = vals[i]; } CHECK_MEM; compressed_matrix<Scalar> mat(aux); return 0;// &mat(coords[0].x(), coords[0].y()); } /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals) { using namespace boost; using namespace boost::numeric; using namespace boost::numeric::ublas; coordinate_matrix<Scalar> aux(SIZE,SIZE); for (int i=0; i<coords.size(); ++i) { aux(coords[i].x(), coords[i].y()) = vals[i]; } compressed_matrix<Scalar> mat(aux); return 0;//&mat(coords[0].x(), coords[0].y()); } EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals) { using namespace boost; using namespace boost::numeric; using namespace boost::numeric::ublas; compressed_matrix<Scalar> mat(SIZE,SIZE); for (int i=0; i<coords.size(); ++i) { mat(coords[i].x(), coords[i].y()) = vals[i]; } return 0;//&mat(coords[0].x(), coords[0].y()); }*/ EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) { using namespace boost; using namespace boost::numeric; using namespace boost::numeric::ublas; // ublas::vector<coordinate_vector<Scalar> > foo; generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE); for (int i=0; i<coords.size(); ++i) { aux(coords[i].x(), coords[i].y()) = vals[i]; } CHECK_MEM; compressed_matrix<Scalar,row_major> mat(aux); return 0;//&mat(coords[0].x(), coords[0].y()); } #endif #ifndef NOMTL EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals); #endif