// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void matrixVisitor(const MatrixType& p) { typedef typename MatrixType::Scalar Scalar; Index rows = p.rows(); Index cols = p.cols(); // construct a random matrix where all coefficients are different MatrixType m; m = MatrixType::Random(rows, cols); for (Index i = 0; i < m.size(); i++) for (Index i2 = 0; i2 < i; i2++) while (numext::equal_strict(m(i), m(i2))) // yes, strict equality m(i) = internal::random(); Scalar minc = Scalar(1000), maxc = Scalar(-1000); Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0; for (Index j = 0; j < cols; j++) for (Index i = 0; i < rows; i++) { if (m(i, j) < minc) { minc = m(i, j); minrow = i; mincol = j; } if (m(i, j) > maxc) { maxc = m(i, j); maxrow = i; maxcol = j; } } Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; Scalar eigen_minc, eigen_maxc; eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(minrow == eigen_minrow); VERIFY(maxrow == eigen_maxrow); VERIFY(mincol == eigen_mincol); VERIFY(maxcol == eigen_maxcol); VERIFY_IS_APPROX(minc, eigen_minc); VERIFY_IS_APPROX(maxc, eigen_maxc); VERIFY_IS_APPROX(minc, m.minCoeff()); VERIFY_IS_APPROX(maxc, m.maxCoeff()); eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol); Index maxrow2 = 0, maxcol2 = 0; eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow2, &maxcol2); VERIFY(maxrow2 == eigen_maxrow); VERIFY(maxcol2 == eigen_maxcol); if (!NumTraits::IsInteger && m.size() > 2) { // Test NaN propagation by replacing an element with NaN. bool stop = false; for (Index j = 0; j < cols && !stop; ++j) { for (Index i = 0; i < rows && !stop; ++i) { if (!(j == mincol && i == minrow) && !(j == maxcol && i == maxrow)) { m(i, j) = NumTraits::quiet_NaN(); stop = true; break; } } } eigen_minc = m.template minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.template maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(minrow == eigen_minrow); VERIFY(maxrow == eigen_maxrow); VERIFY(mincol == eigen_mincol); VERIFY(maxcol == eigen_maxcol); VERIFY_IS_APPROX(minc, eigen_minc); VERIFY_IS_APPROX(maxc, eigen_maxc); VERIFY_IS_APPROX(minc, m.template minCoeff()); VERIFY_IS_APPROX(maxc, m.template maxCoeff()); eigen_minc = m.template minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.template maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(minrow != eigen_minrow || mincol != eigen_mincol); VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol); VERIFY((numext::isnan)(eigen_minc)); VERIFY((numext::isnan)(eigen_maxc)); // Test matrix of all NaNs. m.fill(NumTraits::quiet_NaN()); eigen_minc = m.template minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.template maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(eigen_minrow == 0); VERIFY(eigen_maxrow == 0); VERIFY(eigen_mincol == 0); VERIFY(eigen_maxcol == 0); VERIFY((numext::isnan)(eigen_minc)); VERIFY((numext::isnan)(eigen_maxc)); eigen_minc = m.template minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.template maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(eigen_minrow == 0); VERIFY(eigen_maxrow == 0); VERIFY(eigen_mincol == 0); VERIFY(eigen_maxcol == 0); VERIFY((numext::isnan)(eigen_minc)); VERIFY((numext::isnan)(eigen_maxc)); eigen_minc = m.template minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.template maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(eigen_minrow == 0); VERIFY(eigen_maxrow == 0); VERIFY(eigen_mincol == 0); VERIFY(eigen_maxcol == 0); VERIFY((numext::isnan)(eigen_minc)); VERIFY((numext::isnan)(eigen_maxc)); } } template void vectorVisitor(const VectorType& w) { typedef typename VectorType::Scalar Scalar; Index size = w.size(); // construct a random vector where all coefficients are different VectorType v; v = VectorType::Random(size); for (Index i = 0; i < size; i++) for (Index i2 = 0; i2 < i; i2++) while (v(i) == v(i2)) // yes, == v(i) = internal::random(); Scalar minc = v(0), maxc = v(0); Index minidx = 0, maxidx = 0; for (Index i = 0; i < size; i++) { if (v(i) < minc) { minc = v(i); minidx = i; } if (v(i) > maxc) { maxc = v(i); maxidx = i; } } Index eigen_minidx, eigen_maxidx; Scalar eigen_minc, eigen_maxc; eigen_minc = v.minCoeff(&eigen_minidx); eigen_maxc = v.maxCoeff(&eigen_maxidx); VERIFY(minidx == eigen_minidx); VERIFY(maxidx == eigen_maxidx); VERIFY_IS_APPROX(minc, eigen_minc); VERIFY_IS_APPROX(maxc, eigen_maxc); VERIFY_IS_APPROX(minc, v.minCoeff()); VERIFY_IS_APPROX(maxc, v.maxCoeff()); Index idx0 = internal::random(0, size - 1); Index idx1 = eigen_minidx; Index idx2 = eigen_maxidx; VectorType v1(v), v2(v); v1(idx0) = v1(idx1); v2(idx0) = v2(idx2); v1.minCoeff(&eigen_minidx); v2.maxCoeff(&eigen_maxidx); VERIFY(eigen_minidx == (std::min)(idx0, idx1)); VERIFY(eigen_maxidx == (std::min)(idx0, idx2)); if (!NumTraits::IsInteger && size > 2) { // Test NaN propagation by replacing an element with NaN. for (Index i = 0; i < size; ++i) { if (i != minidx && i != maxidx) { v(i) = NumTraits::quiet_NaN(); break; } } eigen_minc = v.template minCoeff(&eigen_minidx); eigen_maxc = v.template maxCoeff(&eigen_maxidx); VERIFY(minidx == eigen_minidx); VERIFY(maxidx == eigen_maxidx); VERIFY_IS_APPROX(minc, eigen_minc); VERIFY_IS_APPROX(maxc, eigen_maxc); VERIFY_IS_APPROX(minc, v.template minCoeff()); VERIFY_IS_APPROX(maxc, v.template maxCoeff()); eigen_minc = v.template minCoeff(&eigen_minidx); eigen_maxc = v.template maxCoeff(&eigen_maxidx); VERIFY(minidx != eigen_minidx); VERIFY(maxidx != eigen_maxidx); VERIFY((numext::isnan)(eigen_minc)); VERIFY((numext::isnan)(eigen_maxc)); } } template struct TrackedVisitor { using Scalar = typename DenseBase::Scalar; static constexpr int PacketSize = Eigen::internal::packet_traits::size; static constexpr bool RowMajor = Derived::IsRowMajor; void init(Scalar v, Index i, Index j) { return this->operator()(v, i, j); } template void initpacket(Packet p, Index i, Index j) { return this->packet(p, i, j); } void operator()(Scalar v, Index i, Index j) { EIGEN_UNUSED_VARIABLE(v) visited.emplace_back(i, j); scalarOps++; } template void packet(Packet p, Index i, Index j) { EIGEN_UNUSED_VARIABLE(p) for (int k = 0; k < PacketSize; k++) if (RowMajor) visited.emplace_back(i, j + k); else visited.emplace_back(i + k, j); vectorOps++; } std::vector> visited; Index scalarOps = 0; Index vectorOps = 0; }; namespace Eigen { namespace internal { template struct functor_traits> { enum { PacketAccess = Vectorizable, LinearAccess = false, Cost = 1 }; }; } // namespace internal } // namespace Eigen template void checkOptimalTraversal_impl(const DenseBase& mat) { using Scalar = typename DenseBase::Scalar; static constexpr int PacketSize = Eigen::internal::packet_traits::size; static constexpr bool RowMajor = Derived::IsRowMajor; Derived X(mat.rows(), mat.cols()); X.setRandom(); TrackedVisitor visitor; visitor.visited.reserve(X.size()); X.visit(visitor); Index count = 0; for (Index j = 0; j < X.outerSize(); ++j) { for (Index i = 0; i < X.innerSize(); ++i) { Index r = RowMajor ? j : i; Index c = RowMajor ? i : j; VERIFY_IS_EQUAL(visitor.visited[count].first, r); VERIFY_IS_EQUAL(visitor.visited[count].second, c); ++count; } } Index vectorOps = Vectorized ? ((X.innerSize() / PacketSize) * X.outerSize()) : 0; Index scalarOps = X.size() - (vectorOps * PacketSize); VERIFY_IS_EQUAL(vectorOps, visitor.vectorOps); VERIFY_IS_EQUAL(scalarOps, visitor.scalarOps); } void checkOptimalTraversal() { using Scalar = float; constexpr int PacketSize = Eigen::internal::packet_traits::size; // use sizes that mix vector and scalar ops constexpr int Rows = 3 * PacketSize + 1; constexpr int Cols = 4 * PacketSize + 1; int rows = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE); int cols = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE); using UnrollColMajor = Matrix; using UnrollRowMajor = Matrix; using DynamicColMajor = Matrix; using DynamicRowMajor = Matrix; // Scalar-only visitors checkOptimalTraversal_impl(UnrollColMajor(Rows, Cols)); checkOptimalTraversal_impl(UnrollRowMajor(Rows, Cols)); checkOptimalTraversal_impl(DynamicColMajor(rows, cols)); checkOptimalTraversal_impl(DynamicRowMajor(rows, cols)); // Vectorized visitors checkOptimalTraversal_impl(UnrollColMajor(Rows, Cols)); checkOptimalTraversal_impl(UnrollRowMajor(Rows, Cols)); checkOptimalTraversal_impl(DynamicColMajor(rows, cols)); checkOptimalTraversal_impl(DynamicRowMajor(rows, cols)); } EIGEN_DECLARE_TEST(visitor) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(matrixVisitor(Matrix())); CALL_SUBTEST_2(matrixVisitor(Matrix2f())); CALL_SUBTEST_3(matrixVisitor(Matrix4d())); CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12))); CALL_SUBTEST_5(matrixVisitor(Matrix(20, 20))); CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_7(vectorVisitor(Vector4f())); CALL_SUBTEST_7(vectorVisitor(Matrix())); CALL_SUBTEST_8(vectorVisitor(VectorXd(10))); CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10))); CALL_SUBTEST_10(vectorVisitor(VectorXf(33))); } CALL_SUBTEST_11(checkOptimalTraversal()); }