// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #include "main.h" #include <Eigen/Geometry> template<typename Scalar,int Size> void homogeneous(void) { /* this test covers the following files: Homogeneous.h */ typedef Matrix<Scalar,Size,Size> MatrixType; typedef Matrix<Scalar,Size,1> VectorType; typedef Matrix<Scalar,Size+1,Size> HMatrixType; typedef Matrix<Scalar,Size+1,1> HVectorType; typedef Matrix<Scalar,Size,Size+1> T1MatrixType; typedef Matrix<Scalar,Size+1,Size+1> T2MatrixType; typedef Matrix<Scalar,Size+1,Size> T3MatrixType; Scalar largeEps = test_precision<Scalar>(); if (ei_is_same_type<Scalar,float>::ret) largeEps = 1e-3f; VectorType v0 = VectorType::Random(), v1 = VectorType::Random(), ones = VectorType::Ones(); HVectorType hv0 = HVectorType::Random(), hv1 = HVectorType::Random(); MatrixType m0 = MatrixType::Random(), m1 = MatrixType::Random(); HMatrixType hm0 = HMatrixType::Random(), hm1 = HMatrixType::Random(); hv0 << v0, 1; VERIFY_IS_APPROX(v0.homogeneous(), hv0); VERIFY_IS_APPROX(v0, hv0.hnormalized()); hm0 << m0, ones.transpose(); VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0); VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); hm0.row(Size-1).setRandom(); for(int j=0; j<Size; ++j) m0.col(j) = hm0.col(j).start(Size) / hm0(Size,j); VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized()); T1MatrixType t1 = T1MatrixType::Random(); VERIFY_IS_APPROX(t1 * (v0.homogeneous().eval()), t1 * v0.homogeneous()); VERIFY_IS_APPROX(t1 * (m0.colwise().homogeneous().eval()), t1 * m0.colwise().homogeneous()); T2MatrixType t2 = T2MatrixType::Random(); VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous()); VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous()); VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2, v0.transpose().rowwise().homogeneous() * t2); VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2, m0.transpose().rowwise().homogeneous() * t2); T3MatrixType t3 = T3MatrixType::Random(); VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3, v0.transpose().rowwise().homogeneous() * t3); VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3, m0.transpose().rowwise().homogeneous() * t3); // test product with a Transform object Transform<Scalar, Size, Affine> Rt; Matrix<Scalar, Size, Dynamic> pts, Rt_pts1; Rt.setIdentity(); pts.setRandom(Size,5); Rt_pts1 = Rt * pts.colwise().homogeneous(); // std::cerr << (Rt_pts1 - pts).sum() << "\n"; VERIFY_IS_MUCH_SMALLER_THAN( (Rt_pts1 - pts).sum(), Scalar(1)); } void test_geo_homogeneous() { for(int i = 0; i < g_repeat; i++) { // CALL_SUBTEST(( homogeneous<float,1>() )); CALL_SUBTEST(( homogeneous<double,3>() )); // CALL_SUBTEST(( homogeneous<double,8>() )); } }