// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "common.h" // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n extern "C" RealScalar EIGEN_BLAS_FUNC_NAME(asum)(int *n, Scalar *px, int *incx) { // std::cerr << "_asum " << *n << " " << *incx << "\n"; Scalar *x = reinterpret_cast(px); if (*n <= 0) return 0; if (*incx == 1) return make_vector(x, *n).cwiseAbs().sum(); else return make_vector(x, *n, std::abs(*incx)).cwiseAbs().sum(); } extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, Scalar *px, int *incx) { if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); Eigen::DenseIndex ret; if (*incx == 1) make_vector(x, *n).cwiseAbs().maxCoeff(&ret); else make_vector(x, *n, std::abs(*incx)).cwiseAbs().maxCoeff(&ret); return int(ret) + 1; } extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, Scalar *px, int *incx) { if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); Eigen::DenseIndex ret; if (*incx == 1) make_vector(x, *n).cwiseAbs().minCoeff(&ret); else make_vector(x, *n, std::abs(*incx)).cwiseAbs().minCoeff(&ret); return int(ret) + 1; } // computes a vector-vector dot product. extern "C" Scalar EIGEN_BLAS_FUNC_NAME(dot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy) { // std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); if (*incx == 1 && *incy == 1) return (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum(); else if (*incx > 0 && *incy > 0) return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum(); else if (*incx < 0 && *incy > 0) return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum(); else if (*incx > 0 && *incy < 0) return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); else if (*incx < 0 && *incy < 0) return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); else return 0; } // computes the Euclidean norm of a vector. // FIXME extern "C" Scalar EIGEN_BLAS_FUNC_NAME(nrm2)(int *n, Scalar *px, int *incx) { // std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; if (*n <= 0) return 0; Scalar *x = reinterpret_cast(px); if (*incx == 1) return make_vector(x, *n).stableNorm(); else return make_vector(x, *n, std::abs(*incx)).stableNorm(); } EIGEN_BLAS_FUNC(rot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pc, Scalar *ps) { // std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; if (*n <= 0) return; Scalar *x = reinterpret_cast(px); Scalar *y = reinterpret_cast(py); Scalar c = *reinterpret_cast(pc); Scalar s = *reinterpret_cast(ps); StridedVectorType vx(make_vector(x, *n, std::abs(*incx))); StridedVectorType vy(make_vector(y, *n, std::abs(*incy))); Eigen::Reverse rvx(vx); Eigen::Reverse rvy(vy); if (*incx < 0 && *incy > 0) Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation(c, s)); else if (*incx > 0 && *incy < 0) Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation(c, s)); else Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation(c, s)); } /* // performs rotation of points in the modified plane. EIGEN_BLAS_FUNC(rotm)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *param) { Scalar* x = reinterpret_cast(px); Scalar* y = reinterpret_cast(py); // TODO return 0; } // computes the modified parameters for a Givens rotation. EIGEN_BLAS_FUNC(rotmg)(Scalar *d1, Scalar *d2, Scalar *x1, Scalar *x2, Scalar *param) { // TODO return 0; } */