// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud // Copyright (C) 2008-2009 Benoit Jacob // Copyright (C) 2009 Kenneth Riddile // Copyright (C) 2010 Hauke Heibel // Copyright (C) 2010 Thomas Capricelli // Copyright (C) 2013 Pavel Holoborodko // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /***************************************************************************** *** Platform checks for aligned malloc functions *** *****************************************************************************/ #ifndef EIGEN_MEMORY_H #define EIGEN_MEMORY_H #ifndef EIGEN_MALLOC_ALREADY_ALIGNED // Try to determine automatically if malloc is already aligned. // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html // This is true at least since glibc 2.8. // This leaves the question how to detect 64-bit. According to this document, // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed // quite safe, at least within the context of glibc, to equate 64-bit with LP64. #if defined(__GLIBC__) && ((__GLIBC__ >= 2 && __GLIBC_MINOR__ >= 8) || __GLIBC__ > 2) && defined(__LP64__) && \ !defined(__SANITIZE_ADDRESS__) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 #endif // FreeBSD 6 seems to have 16-byte aligned malloc // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 #endif #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) || \ EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED #define EIGEN_MALLOC_ALREADY_ALIGNED 1 #else #define EIGEN_MALLOC_ALREADY_ALIGNED 0 #endif #endif #ifndef EIGEN_MALLOC_CHECK_THREAD_LOCAL // Check whether we can use the thread_local keyword to allow or disallow // allocating memory with per-thread granularity, by means of the // set_is_malloc_allowed() function. #ifndef EIGEN_AVOID_THREAD_LOCAL #if ((EIGEN_COMP_GNUC) || __has_feature(cxx_thread_local) || EIGEN_COMP_MSVC >= 1900) && \ !defined(EIGEN_GPU_COMPILE_PHASE) #define EIGEN_MALLOC_CHECK_THREAD_LOCAL thread_local #else #define EIGEN_MALLOC_CHECK_THREAD_LOCAL #endif #else // EIGEN_AVOID_THREAD_LOCAL #define EIGEN_MALLOC_CHECK_THREAD_LOCAL #endif // EIGEN_AVOID_THREAD_LOCAL #endif // IWYU pragma: private #include "../InternalHeaderCheck.h" namespace Eigen { namespace internal { /***************************************************************************** *** Implementation of portable aligned versions of malloc/free/realloc *** *****************************************************************************/ #ifdef EIGEN_NO_MALLOC EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() { eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); } #elif defined EIGEN_RUNTIME_NO_MALLOC EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) { EIGEN_MALLOC_CHECK_THREAD_LOCAL static bool value = true; if (update == 1) value = new_value; return value; } EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() { eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); } #else EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() {} #endif EIGEN_DEVICE_FUNC inline void throw_std_bad_alloc() { #ifdef EIGEN_EXCEPTIONS throw std::bad_alloc(); #else std::size_t huge = static_cast(-1); #if defined(EIGEN_HIPCC) // // calls to "::operator new" are to be treated as opaque function calls (i.e no inlining), // and as a consequence the code in the #else block triggers the hipcc warning : // "no overloaded function has restriction specifiers that are compatible with the ambient context" // // "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects // the same on "operator new" // Reverting code back to the old version in this #if block for the hipcc compiler // new int[huge]; #else void* unused = ::operator new(huge); EIGEN_UNUSED_VARIABLE(unused); #endif #endif } /***************************************************************************** *** Implementation of handmade aligned functions *** *****************************************************************************/ /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ /** \internal Like malloc, but the returned pointer is guaranteed to be aligned to `alignment`. * Fast, but wastes `alignment` additional bytes of memory. Does not throw any exception. */ EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) { eigen_assert(alignment >= sizeof(void*) && alignment <= 256 && (alignment & (alignment - 1)) == 0 && "Alignment must be at least sizeof(void*), less than or equal to 256, and a power of 2"); check_that_malloc_is_allowed(); EIGEN_USING_STD(malloc) void* original = malloc(size + alignment); if (original == nullptr) return nullptr; std::size_t offset = alignment - (reinterpret_cast(original) & (alignment - 1)); void* aligned = static_cast(static_cast(original) + offset); // Store offset - 1, since it is guaranteed to be at least 1. *(static_cast(aligned) - 1) = static_cast(offset - 1); return aligned; } /** \internal Frees memory allocated with handmade_aligned_malloc */ EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void* ptr) { if (ptr != nullptr) { std::size_t offset = static_cast(*(static_cast(ptr) - 1)) + 1; void* original = static_cast(static_cast(ptr) - offset); check_that_malloc_is_allowed(); EIGEN_USING_STD(free) free(original); } } /** \internal * \brief Reallocates aligned memory. * Since we know that our handmade version is based on std::malloc * we can use std::realloc to implement efficient reallocation. */ EIGEN_DEVICE_FUNC inline void* handmade_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) { if (ptr == nullptr) return handmade_aligned_malloc(new_size, alignment); std::size_t old_offset = static_cast(*(static_cast(ptr) - 1)) + 1; void* old_original = static_cast(ptr) - old_offset; check_that_malloc_is_allowed(); EIGEN_USING_STD(realloc) void* original = realloc(old_original, new_size + alignment); if (original == nullptr) return nullptr; if (original == old_original) return ptr; std::size_t offset = alignment - (reinterpret_cast(original) & (alignment - 1)); void* aligned = static_cast(static_cast(original) + offset); if (offset != old_offset) { const void* src = static_cast(static_cast(original) + old_offset); std::size_t count = (std::min)(new_size, old_size); std::memmove(aligned, src, count); } // Store offset - 1, since it is guaranteed to be at least 1. *(static_cast(aligned) - 1) = static_cast(offset - 1); return aligned; } /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on * the requirements. On allocation error, the returned pointer is null, and std::bad_alloc is thrown. */ EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) { if (size == 0) return nullptr; void* result; #if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED check_that_malloc_is_allowed(); EIGEN_USING_STD(malloc) result = malloc(size); #if EIGEN_DEFAULT_ALIGN_BYTES == 16 eigen_assert((size < 16 || (std::size_t(result) % 16) == 0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback " "to handmade aligned memory allocator."); #endif #else result = handmade_aligned_malloc(size); #endif if (!result && size) throw_std_bad_alloc(); return result; } /** \internal Frees memory allocated with aligned_malloc. */ EIGEN_DEVICE_FUNC inline void aligned_free(void* ptr) { #if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED if (ptr != nullptr) { check_that_malloc_is_allowed(); EIGEN_USING_STD(free) free(ptr); } #else handmade_aligned_free(ptr); #endif } /** * \internal * \brief Reallocates an aligned block of memory. * \throws std::bad_alloc on allocation failure */ EIGEN_DEVICE_FUNC inline void* aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) { if (ptr == nullptr) return aligned_malloc(new_size); if (old_size == new_size) return ptr; if (new_size == 0) { aligned_free(ptr); return nullptr; } void* result; #if (EIGEN_DEFAULT_ALIGN_BYTES == 0) || EIGEN_MALLOC_ALREADY_ALIGNED EIGEN_UNUSED_VARIABLE(old_size) check_that_malloc_is_allowed(); EIGEN_USING_STD(realloc) result = realloc(ptr, new_size); #else result = handmade_aligned_realloc(ptr, new_size, old_size); #endif if (!result && new_size) throw_std_bad_alloc(); return result; } /***************************************************************************** *** Implementation of conditionally aligned functions *** *****************************************************************************/ /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. */ template EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) { return aligned_malloc(size); } template <> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) { if (size == 0) return nullptr; check_that_malloc_is_allowed(); EIGEN_USING_STD(malloc) void* result = malloc(size); if (!result && size) throw_std_bad_alloc(); return result; } /** \internal Frees memory allocated with conditional_aligned_malloc */ template EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void* ptr) { aligned_free(ptr); } template <> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void* ptr) { if (ptr != nullptr) { check_that_malloc_is_allowed(); EIGEN_USING_STD(free) free(ptr); } } template EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) { return aligned_realloc(ptr, new_size, old_size); } template <> EIGEN_DEVICE_FUNC inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) { if (ptr == nullptr) return conditional_aligned_malloc(new_size); if (old_size == new_size) return ptr; if (new_size == 0) { conditional_aligned_free(ptr); return nullptr; } check_that_malloc_is_allowed(); EIGEN_USING_STD(realloc) return realloc(ptr, new_size); } /***************************************************************************** *** Construction/destruction of array elements *** *****************************************************************************/ /** \internal Destructs the elements of an array. * The \a size parameters tells on how many objects to call the destructor of T. */ template EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T* ptr, std::size_t size) { // always destruct an array starting from the end. if (ptr) while (size) ptr[--size].~T(); } /** \internal Constructs the elements of an array. * The \a size parameter tells on how many objects to call the constructor of T. */ template EIGEN_DEVICE_FUNC inline T* default_construct_elements_of_array(T* ptr, std::size_t size) { std::size_t i = 0; EIGEN_TRY { for (i = 0; i < size; ++i) ::new (ptr + i) T; } EIGEN_CATCH(...) { destruct_elements_of_array(ptr, i); EIGEN_THROW; } return ptr; } /** \internal Copy-constructs the elements of an array. * The \a size parameter tells on how many objects to copy. */ template EIGEN_DEVICE_FUNC inline T* copy_construct_elements_of_array(T* ptr, const T* src, std::size_t size) { std::size_t i = 0; EIGEN_TRY { for (i = 0; i < size; ++i) ::new (ptr + i) T(*(src + i)); } EIGEN_CATCH(...) { destruct_elements_of_array(ptr, i); EIGEN_THROW; } return ptr; } /** \internal Move-constructs the elements of an array. * The \a size parameter tells on how many objects to move. */ template EIGEN_DEVICE_FUNC inline T* move_construct_elements_of_array(T* ptr, T* src, std::size_t size) { std::size_t i = 0; EIGEN_TRY { for (i = 0; i < size; ++i) ::new (ptr + i) T(std::move(*(src + i))); } EIGEN_CATCH(...) { destruct_elements_of_array(ptr, i); EIGEN_THROW; } return ptr; } /***************************************************************************** *** Implementation of aligned new/delete-like functions *** *****************************************************************************/ template EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) { constexpr std::size_t max_elements = (std::numeric_limits::max)() / sizeof(T); if (size > max_elements) throw_std_bad_alloc(); } /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. * The default constructor of T is called. */ template EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) { check_size_for_overflow(size); T* result = static_cast(aligned_malloc(sizeof(T) * size)); EIGEN_TRY { return default_construct_elements_of_array(result, size); } EIGEN_CATCH(...) { aligned_free(result); EIGEN_THROW; } return result; } template EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) { check_size_for_overflow(size); T* result = static_cast(conditional_aligned_malloc(sizeof(T) * size)); EIGEN_TRY { return default_construct_elements_of_array(result, size); } EIGEN_CATCH(...) { conditional_aligned_free(result); EIGEN_THROW; } return result; } /** \internal Deletes objects constructed with aligned_new * The \a size parameters tells on how many objects to call the destructor of T. */ template EIGEN_DEVICE_FUNC inline void aligned_delete(T* ptr, std::size_t size) { destruct_elements_of_array(ptr, size); aligned_free(ptr); } /** \internal Deletes objects constructed with conditional_aligned_new * The \a size parameters tells on how many objects to call the destructor of T. */ template EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T* ptr, std::size_t size) { destruct_elements_of_array(ptr, size); conditional_aligned_free(ptr); } template EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) { check_size_for_overflow(new_size); check_size_for_overflow(old_size); // If elements need to be explicitly initialized, we cannot simply realloc // (or memcpy) the memory block - each element needs to be reconstructed. // Otherwise, objects that contain internal pointers like mpfr or // AnnoyingScalar can be pointing to the wrong thing. T* result = static_cast(conditional_aligned_malloc(sizeof(T) * new_size)); EIGEN_TRY { // Move-construct initial elements. std::size_t copy_size = (std::min)(old_size, new_size); move_construct_elements_of_array(result, pts, copy_size); // Default-construct remaining elements. if (new_size > old_size) { default_construct_elements_of_array(result + copy_size, new_size - old_size); } // Delete old elements. conditional_aligned_delete(pts, old_size); } EIGEN_CATCH(...) { conditional_aligned_free(result); EIGEN_THROW; } return result; } template EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) { if (size == 0) return nullptr; // short-cut. Also fixes Bug 884 check_size_for_overflow(size); T* result = static_cast(conditional_aligned_malloc(sizeof(T) * size)); if (NumTraits::RequireInitialization) { EIGEN_TRY { default_construct_elements_of_array(result, size); } EIGEN_CATCH(...) { conditional_aligned_free(result); EIGEN_THROW; } } return result; } template EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) { if (NumTraits::RequireInitialization) { return conditional_aligned_realloc_new(pts, new_size, old_size); } check_size_for_overflow(new_size); check_size_for_overflow(old_size); return static_cast( conditional_aligned_realloc(static_cast(pts), sizeof(T) * new_size, sizeof(T) * old_size)); } template EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T* ptr, std::size_t size) { if (NumTraits::RequireInitialization) destruct_elements_of_array(ptr, size); conditional_aligned_free(ptr); } /****************************************************************************/ /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a * Alignment. * * \tparam Alignment requested alignment in Bytes. * \param array the address of the start of the array * \param size the size of the array * * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If * packet size for the given scalar type is 1, then everything is considered well-aligned. * * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails * for example with Scalar=double on certain 32-bit platforms, see bug #79. * * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. * \sa first_default_aligned() */ template EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) { const Index ScalarSize = sizeof(Scalar); const Index AlignmentSize = Alignment / ScalarSize; const Index AlignmentMask = AlignmentSize - 1; if (AlignmentSize <= 1) { // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar // so that all elements of the array have the same alignment. return 0; } else if ((std::uintptr_t(array) & (sizeof(Scalar) - 1)) || (Alignment % ScalarSize) != 0) { // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the // scalar size. Consequently, no element of the array is well aligned. return size; } else { Index first = (AlignmentSize - (Index((std::uintptr_t(array) / sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; return (first < size) ? first : size; } } /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet * requirement. \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase) */ template EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) { typedef typename packet_traits::type DefaultPacketType; return first_aligned::alignment>(array, size); } /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size */ template inline Index first_multiple(Index size, Index base) { return ((size + base - 1) / base) * base; } // std::copy is much slower than memcpy, so let's introduce a smart_copy which // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. template struct smart_copy_helper; template EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) { smart_copy_helper::RequireInitialization>::run(start, end, target); } template struct smart_copy_helper { EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) { std::intptr_t size = std::intptr_t(end) - std::intptr_t(start); if (size == 0) return; eigen_internal_assert(start != 0 && end != 0 && target != 0); EIGEN_USING_STD(memcpy) memcpy(target, start, size); } }; template struct smart_copy_helper { EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) { std::copy(start, end, target); } }; // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. template struct smart_memmove_helper; template void smart_memmove(const T* start, const T* end, T* target) { smart_memmove_helper::RequireInitialization>::run(start, end, target); } template struct smart_memmove_helper { static inline void run(const T* start, const T* end, T* target) { std::intptr_t size = std::intptr_t(end) - std::intptr_t(start); if (size == 0) return; eigen_internal_assert(start != 0 && end != 0 && target != 0); std::memmove(target, start, size); } }; template struct smart_memmove_helper { static inline void run(const T* start, const T* end, T* target) { if (std::uintptr_t(target) < std::uintptr_t(start)) { std::copy(start, end, target); } else { std::ptrdiff_t count = (std::ptrdiff_t(end) - std::ptrdiff_t(start)) / sizeof(T); std::copy_backward(start, end, target + count); } } }; template EIGEN_DEVICE_FUNC T* smart_move(T* start, T* end, T* target) { return std::move(start, end, target); } /***************************************************************************** *** Implementation of runtime stack allocation (falling back to malloc) *** *****************************************************************************/ // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA // to the appropriate stack allocation function #if !defined EIGEN_ALLOCA && !defined EIGEN_GPU_COMPILE_PHASE #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) #define EIGEN_ALLOCA alloca #elif EIGEN_COMP_MSVC #define EIGEN_ALLOCA _alloca #endif #endif // With clang -Oz -mthumb, alloca changes the stack pointer in a way that is // not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because // the compiler still emits bad code because stack allocation checks use "<=". // TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772 // is fixed. #if defined(__clang__) && defined(__thumb__) #undef EIGEN_ALLOCA #endif // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. template class aligned_stack_memory_handler : noncopyable { public: /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. * Note that \a ptr can be 0 regardless of the other parameters. * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type *T (see NumTraits::RequireInitialization). In this case, the buffer elements will also be destructed when this *handler will be destructed. Finally, if \a dealloc is true, then the pointer \a ptr is freed. **/ EIGEN_DEVICE_FUNC aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) : m_ptr(ptr), m_size(size), m_deallocate(dealloc) { if (NumTraits::RequireInitialization && m_ptr) Eigen::internal::default_construct_elements_of_array(m_ptr, size); } EIGEN_DEVICE_FUNC ~aligned_stack_memory_handler() { if (NumTraits::RequireInitialization && m_ptr) Eigen::internal::destruct_elements_of_array(m_ptr, m_size); if (m_deallocate) Eigen::internal::aligned_free(m_ptr); } protected: T* m_ptr; std::size_t m_size; bool m_deallocate; }; #ifdef EIGEN_ALLOCA template ::Evaluate && Xpr::MaxSizeAtCompileTime == Dynamic> struct local_nested_eval_wrapper { static constexpr bool NeedExternalBuffer = false; typedef typename Xpr::Scalar Scalar; typedef typename nested_eval::type ObjectType; ObjectType object; EIGEN_DEVICE_FUNC local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr) { EIGEN_UNUSED_VARIABLE(ptr); eigen_internal_assert(ptr == 0); } }; template struct local_nested_eval_wrapper { static constexpr bool NeedExternalBuffer = true; typedef typename Xpr::Scalar Scalar; typedef typename plain_object_eval::type PlainObject; typedef Map ObjectType; ObjectType object; EIGEN_DEVICE_FUNC local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(ptr == 0 ? reinterpret_cast(Eigen::internal::aligned_malloc(sizeof(Scalar) * xpr.size())) : ptr, xpr.rows(), xpr.cols()), m_deallocate(ptr == 0) { if (NumTraits::RequireInitialization && object.data()) Eigen::internal::default_construct_elements_of_array(object.data(), object.size()); object = xpr; } EIGEN_DEVICE_FUNC ~local_nested_eval_wrapper() { if (NumTraits::RequireInitialization && object.data()) Eigen::internal::destruct_elements_of_array(object.data(), object.size()); if (m_deallocate) Eigen::internal::aligned_free(object.data()); } private: bool m_deallocate; }; #endif // EIGEN_ALLOCA template class scoped_array : noncopyable { T* m_ptr; public: explicit scoped_array(std::ptrdiff_t size) { m_ptr = new T[size]; } ~scoped_array() { delete[] m_ptr; } T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } T*& ptr() { return m_ptr; } const T* ptr() const { return m_ptr; } operator const T*() const { return m_ptr; } }; template void swap(scoped_array& a, scoped_array& b) { std::swap(a.ptr(), b.ptr()); } } // end namespace internal /** \internal * * The macro ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) declares, allocates, * and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack * if the size in bytes is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the * platform (currently, this is Linux, OSX and Visual Studio only). Otherwise the memory is allocated on the heap. The * allocated buffer is automatically deleted when exiting the scope of this declaration. If BUFFER is non null, then the * declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. Here is an example: \code * { * ei_declare_aligned_stack_constructed_variable(float,data,size,0); * // use data[0] to data[size-1] * } * \endcode * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. * * The macro ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) is analogue to * \code * typename internal::nested_eval::type NAME(XPR); * \endcode * with the advantage of using aligned stack allocation even if the maximal size of XPR at compile time is unknown. * This is accomplished through alloca if this later is supported and if the required number of bytes * is below EIGEN_STACK_ALLOCATION_LIMIT. */ #if defined(EIGEN_ALLOCA) && !defined(EIGEN_NO_ALLOCA) #if EIGEN_DEFAULT_ALIGN_BYTES > 0 // We always manually re-align the result of EIGEN_ALLOCA. // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. #if ((EIGEN_COMP_GNUC || EIGEN_COMP_CLANG) && !EIGEN_COMP_NVHPC) #define EIGEN_ALIGNED_ALLOCA(SIZE) __builtin_alloca_with_align(SIZE, CHAR_BIT* EIGEN_DEFAULT_ALIGN_BYTES) #else EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* eigen_aligned_alloca_helper(void* ptr) { constexpr std::uintptr_t mask = EIGEN_DEFAULT_ALIGN_BYTES - 1; std::uintptr_t ptr_int = std::uintptr_t(ptr); std::uintptr_t aligned_ptr_int = (ptr_int + mask) & ~mask; std::uintptr_t offset = aligned_ptr_int - ptr_int; return static_cast(static_cast(ptr) + offset); } #define EIGEN_ALIGNED_ALLOCA(SIZE) eigen_aligned_alloca_helper(EIGEN_ALLOCA(SIZE + EIGEN_DEFAULT_ALIGN_BYTES - 1)) #endif #else #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) #endif #define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER) \ Eigen::internal::check_size_for_overflow(SIZE); \ TYPE* NAME = (BUFFER) != 0 ? (BUFFER) \ : reinterpret_cast((sizeof(TYPE) * (SIZE) <= EIGEN_STACK_ALLOCATION_LIMIT) \ ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE) * (SIZE)) \ : Eigen::internal::aligned_malloc(sizeof(TYPE) * (SIZE))); \ Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME, _stack_memory_destructor)( \ (BUFFER) == 0 ? NAME : 0, SIZE, sizeof(TYPE) * (SIZE) > EIGEN_STACK_ALLOCATION_LIMIT) #define ei_declare_local_nested_eval(XPR_T, XPR, N, NAME) \ Eigen::internal::local_nested_eval_wrapper EIGEN_CAT(NAME, _wrapper)( \ XPR, reinterpret_cast( \ ((Eigen::internal::local_nested_eval_wrapper::NeedExternalBuffer) && \ ((sizeof(typename XPR_T::Scalar) * XPR.size()) <= EIGEN_STACK_ALLOCATION_LIMIT)) \ ? EIGEN_ALIGNED_ALLOCA(sizeof(typename XPR_T::Scalar) * XPR.size()) \ : 0)); \ typename Eigen::internal::local_nested_eval_wrapper::ObjectType NAME(EIGEN_CAT(NAME, _wrapper).object) #else #define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER) \ Eigen::internal::check_size_for_overflow(SIZE); \ TYPE* NAME = \ (BUFFER) != 0 ? BUFFER : reinterpret_cast(Eigen::internal::aligned_malloc(sizeof(TYPE) * (SIZE))); \ Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME, _stack_memory_destructor)( \ (BUFFER) == 0 ? NAME : 0, SIZE, true) #define ei_declare_local_nested_eval(XPR_T, XPR, N, NAME) \ typename Eigen::internal::nested_eval::type NAME(XPR) #endif /***************************************************************************** *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** *****************************************************************************/ #if EIGEN_HAS_CXX17_OVERALIGN // C++17 -> no need to bother about alignment anymore :) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Size) #else // HIP does not support new/delete on device. #if EIGEN_MAX_ALIGN_BYTES != 0 && !defined(EIGEN_HIP_DEVICE_COMPILE) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ EIGEN_DEVICE_FUNC void* operator new(std::size_t size, const std::nothrow_t&) noexcept { \ EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc(size); } \ EIGEN_CATCH(...) { return 0; } \ } #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ EIGEN_DEVICE_FUNC void* operator new(std::size_t size) { \ return Eigen::internal::conditional_aligned_malloc(size); \ } \ EIGEN_DEVICE_FUNC void* operator new[](std::size_t size) { \ return Eigen::internal::conditional_aligned_malloc(size); \ } \ EIGEN_DEVICE_FUNC void operator delete(void* ptr) noexcept { \ Eigen::internal::conditional_aligned_free(ptr); \ } \ EIGEN_DEVICE_FUNC void operator delete[](void* ptr) noexcept { \ Eigen::internal::conditional_aligned_free(ptr); \ } \ EIGEN_DEVICE_FUNC void operator delete(void* ptr, std::size_t /* sz */) noexcept { \ Eigen::internal::conditional_aligned_free(ptr); \ } \ EIGEN_DEVICE_FUNC void operator delete[](void* ptr, std::size_t /* sz */) noexcept { \ Eigen::internal::conditional_aligned_free(ptr); \ } \ /* in-place new and delete. since (at least afaik) there is no actual */ \ /* memory allocated we can safely let the default implementation handle */ \ /* this particular case. */ \ EIGEN_DEVICE_FUNC static void* operator new(std::size_t size, void* ptr) { return ::operator new(size, ptr); } \ EIGEN_DEVICE_FUNC static void* operator new[](std::size_t size, void* ptr) { return ::operator new[](size, ptr); } \ EIGEN_DEVICE_FUNC void operator delete(void* memory, void* ptr) noexcept { return ::operator delete(memory, ptr); } \ EIGEN_DEVICE_FUNC void operator delete[](void* memory, void* ptr) noexcept { \ return ::operator delete[](memory, ptr); \ } \ /* nothrow-new (returns zero instead of std::bad_alloc) */ \ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ EIGEN_DEVICE_FUNC void operator delete(void* ptr, const std::nothrow_t&) noexcept { \ Eigen::internal::conditional_aligned_free(ptr); \ } \ typedef void eigen_aligned_operator_new_marker_type; #else #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) #endif #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Size) \ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF( \ bool(((Size) != Eigen::Dynamic) && \ (((EIGEN_MAX_ALIGN_BYTES >= 16) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES) == 0)) || \ ((EIGEN_MAX_ALIGN_BYTES >= 32) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES / 2) == 0)) || \ ((EIGEN_MAX_ALIGN_BYTES >= 64) && ((sizeof(Scalar) * (Size)) % (EIGEN_MAX_ALIGN_BYTES / 4) == 0))))) #endif /****************************************************************************/ /** \class aligned_allocator * \ingroup Core_Module * * \brief STL compatible allocator to use with types requiring a non-standard alignment. * * The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd. * By default, it will thus provide at least 16 bytes alignment and more in following cases: * - 32 bytes alignment if AVX is enabled. * - 64 bytes alignment if AVX512 is enabled. * * This can be controlled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented * \link TopicPreprocessorDirectivesPerformance there \endlink. * * Example: * \code * // Matrix4f requires 16 bytes alignment: * std::map< int, Matrix4f, std::less, * aligned_allocator > > my_map_mat4; * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: * std::map< int, Vector3f > my_map_vec3; * \endcode * * \sa \blank \ref TopicStlContainers. */ template class aligned_allocator { public: typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef T* pointer; typedef const T* const_pointer; typedef T& reference; typedef const T& const_reference; typedef T value_type; template struct rebind { typedef aligned_allocator other; }; aligned_allocator() = default; aligned_allocator(const aligned_allocator&) = default; template aligned_allocator(const aligned_allocator&) {} template constexpr bool operator==(const aligned_allocator&) const noexcept { return true; } template constexpr bool operator!=(const aligned_allocator&) const noexcept { return false; } #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_STRICT_AT_LEAST(7, 0, 0) // In gcc std::allocator::max_size() is bugged making gcc triggers a warning: // eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object // size 9223372036854775807 See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544 size_type max_size() const { return (std::numeric_limits::max)() / sizeof(T); } #endif pointer allocate(size_type num, const void* /*hint*/ = 0) { internal::check_size_for_overflow(num); return static_cast(internal::aligned_malloc(num * sizeof(T))); } void deallocate(pointer p, size_type /*num*/) { internal::aligned_free(p); } }; //---------- Cache sizes ---------- #if !defined(EIGEN_NO_CPUID) #if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 #if defined(__PIC__) && EIGEN_ARCH_i386 // Case for x86 with PIC #define EIGEN_CPUID(abcd, func, id) \ __asm__ __volatile__("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1" \ : "=a"(abcd[0]), "=&r"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) \ : "a"(func), "c"(id)); #elif defined(__PIC__) && EIGEN_ARCH_x86_64 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with // the default small code model. However, we cannot detect which code model is used, and the xchg overhead is negligible // anyway. #define EIGEN_CPUID(abcd, func, id) \ __asm__ __volatile__("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1" \ : "=a"(abcd[0]), "=&r"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) \ : "0"(func), "2"(id)); #else // Case for x86_64 or x86 w/o PIC #define EIGEN_CPUID(abcd, func, id) \ __asm__ __volatile__("cpuid" : "=a"(abcd[0]), "=b"(abcd[1]), "=c"(abcd[2]), "=d"(abcd[3]) : "0"(func), "2"(id)); #endif #elif EIGEN_COMP_MSVC #if EIGEN_ARCH_i386_OR_x86_64 #define EIGEN_CPUID(abcd, func, id) __cpuidex((int*)abcd, func, id) #endif #endif #endif namespace internal { #ifdef EIGEN_CPUID inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) { return abcd[1] == vendor[0] && abcd[3] == vendor[1] && abcd[2] == vendor[2]; } inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) { int abcd[4]; l1 = l2 = l3 = 0; int cache_id = 0; int cache_type = 0; do { abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; EIGEN_CPUID(abcd, 0x4, cache_id); cache_type = (abcd[0] & 0x0F) >> 0; if (cache_type == 1 || cache_type == 3) // data or unified cache { int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] int sets = (abcd[2]); // C[31:0] int cache_size = (ways + 1) * (partitions + 1) * (line_size + 1) * (sets + 1); switch (cache_level) { case 1: l1 = cache_size; break; case 2: l2 = cache_size; break; case 3: l3 = cache_size; break; default: break; } } cache_id++; } while (cache_type > 0 && cache_id < 16); } inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) { int abcd[4]; abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; l1 = l2 = l3 = 0; EIGEN_CPUID(abcd, 0x00000002, 0); unsigned char* bytes = reinterpret_cast(abcd) + 2; bool check_for_p2_core2 = false; for (int i = 0; i < 14; ++i) { switch (bytes[i]) { case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines case 0x49: if (l2 != 0) l3 = 4096; else { check_for_p2_core2 = true; l3 = l2 = 4096; } break; // code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) default: break; } } if (check_for_p2_core2 && l2 == l3) l3 = 0; l1 *= 1024; l2 *= 1024; l3 *= 1024; } inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) { if (max_std_funcs >= 4) queryCacheSizes_intel_direct(l1, l2, l3); else if (max_std_funcs >= 2) queryCacheSizes_intel_codes(l1, l2, l3); else l1 = l2 = l3 = 0; } inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) { int abcd[4]; abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; // First query the max supported function. EIGEN_CPUID(abcd, 0x80000000, 0); if (static_cast(abcd[0]) >= static_cast(0x80000006)) { EIGEN_CPUID(abcd, 0x80000005, 0); l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; EIGEN_CPUID(abcd, 0x80000006, 0); l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB } else { l1 = l2 = l3 = 0; } } #endif /** \internal * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ inline void queryCacheSizes(int& l1, int& l2, int& l3) { #ifdef EIGEN_CPUID int abcd[4]; const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" // identify the CPU vendor EIGEN_CPUID(abcd, 0x0, 0); int max_std_funcs = abcd[0]; if (cpuid_is_vendor(abcd, GenuineIntel)) queryCacheSizes_intel(l1, l2, l3, max_std_funcs); else if (cpuid_is_vendor(abcd, AuthenticAMD) || cpuid_is_vendor(abcd, AMDisbetter_)) queryCacheSizes_amd(l1, l2, l3); else // by default let's use Intel's API queryCacheSizes_intel(l1, l2, l3, max_std_funcs); // here is the list of other vendors: // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") // ||cpuid_is_vendor(abcd,"CyrixInstead") // ||cpuid_is_vendor(abcd,"CentaurHauls") // ||cpuid_is_vendor(abcd,"GenuineTMx86") // ||cpuid_is_vendor(abcd,"TransmetaCPU") // ||cpuid_is_vendor(abcd,"RiseRiseRise") // ||cpuid_is_vendor(abcd,"Geode by NSC") // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") // ||cpuid_is_vendor(abcd,"NexGenDriven") #else l1 = l2 = l3 = -1; #endif } /** \internal * \returns the size in Bytes of the L1 data cache */ inline int queryL1CacheSize() { int l1(-1), l2, l3; queryCacheSizes(l1, l2, l3); return l1; } /** \internal * \returns the size in Bytes of the L2 or L3 cache if this later is present */ inline int queryTopLevelCacheSize() { int l1, l2(-1), l3(-1); queryCacheSizes(l1, l2, l3); return (std::max)(l2, l3); } /** \internal * This wraps C++20's std::construct_at, using placement new instead if it is not available. */ #if EIGEN_COMP_CXXVER >= 20 && defined(__cpp_lib_constexpr_dynamic_alloc) && \ __cpp_lib_constexpr_dynamic_alloc >= 201907L using std::construct_at; #else template EIGEN_DEVICE_FUNC T* construct_at(T* p, Args&&... args) { return ::new (const_cast(static_cast(p))) T(std::forward(args)...); } #endif /** \internal * This wraps C++17's std::destroy_at. If it's not available it calls the destructor. * The wrapper is not a full replacement for C++20's std::destroy_at as it cannot * be applied to std::array. */ #if EIGEN_COMP_CXXVER >= 17 using std::destroy_at; #else template EIGEN_DEVICE_FUNC void destroy_at(T* p) { p->~T(); } #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_MEMORY_H