// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void product_extra(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::FloatingPoint FloatingPoint; typedef Matrix RowVectorType; typedef Matrix ColVectorType; typedef Matrix OtherMajorMatrixType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); // v2 = RowVectorType::Random(rows), // vzero = RowVectorType::Zero(rows); ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); OtherMajorMatrixType tm1 = m1; Scalar s1 = ei_random(), s2 = ei_random(), s3 = ei_random(); int c0 = ei_random(0,cols/2-1), c1 = ei_random(cols/2,cols), r0 = ei_random(0,rows/2-1), r1 = ei_random(rows/2,rows); // all the expressions in this test should be compiled as a single matrix product // TODO: add internal checks to verify that /* VERIFY_IS_APPROX(m1 * m2.adjoint(), m1 * m2.adjoint().eval()); VERIFY_IS_APPROX(m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); VERIFY_IS_APPROX(m1.adjoint() * m2, m1.adjoint().eval() * m2); VERIFY_IS_APPROX( (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX( (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint() * s1).eval() * (s3 * m2).eval()); VERIFY_IS_APPROX( (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); VERIFY_IS_APPROX( (-m1*s2) * s1*m2.adjoint(), (-m1*s2).eval() * (s1*m2.adjoint()).eval()); // a very tricky case where a scale factor has to be automatically conjugated: VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); // test all possible conjugate combinations for the four matrix-vector product cases: // std::cerr << "a\n"; VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); // std::cerr << "b\n"; VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); // std::cerr << "c\n"; VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); // std::cerr << "d\n"; VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); */ // test with sub matrices m2 = m1; m3 = m1; // std::cerr << (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).rows() << " " << (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).cols() << " == " << vrres.segment(r0,r1-r0).rows() << " " << vrres.segment(r0,r1-r0).cols() << "\n"; // m2.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy(); // m3.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval(); Matrix a = m2.col(c0), b = a; a.segment(5,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy(); b.segment(5,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval(); // m2.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).lazy(); // m3.col(c0).segment(0,r1-r0) += (m1.block(r0,c0, r1-r0, c1-c0) * vc2.segment(c0,c1-c0)).eval(); // if (!m2.isApprox(m3)) std::cerr << (a-b).cwise().abs().maxCoeff() << "\n"; VERIFY_IS_APPROX(a,b); // VERIFY_IS_APPROX( vrres.segment(0,r1-r0).transpose().eval(), // v1.segment(0,r1-r0).transpose() + m1.block(r0,c0, r1-r0, c1-c0).eval() * (vc2.segment(c0,c1-c0)).eval()); } void test_product_extra() { for(int i = 0; i < g_repeat; i++) { int rows = ei_random(2,10); int cols = ei_random(2,10); int c0 = ei_random(0,cols/2-1), c1 = ei_random(cols/2,cols), r0 = ei_random(0,rows/2-1), r1 = ei_random(rows/2,rows); MatrixXf m1 = MatrixXf::Random(rows,cols), m2 = m1; Matrix a = m2.col(c0), b = a; Matrix vc2 = Matrix::Random(cols); if (1+r1-r0(1,320), ei_random(1,320))) ); // CALL_SUBTEST( product_extra(MatrixXd(ei_random(1,320), ei_random(1,320))) ); // CALL_SUBTEST( product(MatrixXi(ei_random(1,320), ei_random(1,320))) ); // CALL_SUBTEST( product_extra(MatrixXcf(ei_random(50,50), ei_random(50,50))) ); // CALL_SUBTEST( product(Matrix(ei_random(1,320), ei_random(1,320))) ); } }