// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_NUMTRAITS_H #define EIGEN_NUMTRAITS_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { // default implementation of digits(), based on numeric_limits if specialized, // 0 for integer types, and log2(epsilon()) otherwise. template ::is_specialized, bool is_integer = NumTraits::IsInteger> struct default_digits_impl { EIGEN_DEVICE_FUNC constexpr static int run() { return std::numeric_limits::digits; } }; template struct default_digits_impl // Floating point { EIGEN_DEVICE_FUNC constexpr static int run() { using std::ceil; using std::log2; typedef typename NumTraits::Real Real; return int(ceil(-log2(NumTraits::epsilon()))); } }; template struct default_digits_impl // Integer { EIGEN_DEVICE_FUNC constexpr static int run() { return 0; } }; // default implementation of digits10(), based on numeric_limits if specialized, // 0 for integer types, and floor((digits()-1)*log10(2)) otherwise. template ::is_specialized, bool is_integer = NumTraits::IsInteger> struct default_digits10_impl { EIGEN_DEVICE_FUNC constexpr static int run() { return std::numeric_limits::digits10; } }; template struct default_digits10_impl // Floating point { EIGEN_DEVICE_FUNC constexpr static int run() { using std::floor; using std::log10; typedef typename NumTraits::Real Real; return int(floor((internal::default_digits_impl::run() - 1) * log10(2))); } }; template struct default_digits10_impl // Integer { EIGEN_DEVICE_FUNC constexpr static int run() { return 0; } }; // default implementation of max_digits10(), based on numeric_limits if specialized, // 0 for integer types, and log10(2) * digits() + 1 otherwise. template ::is_specialized, bool is_integer = NumTraits::IsInteger> struct default_max_digits10_impl { EIGEN_DEVICE_FUNC constexpr static int run() { return std::numeric_limits::max_digits10; } }; template struct default_max_digits10_impl // Floating point { EIGEN_DEVICE_FUNC constexpr static int run() { using std::ceil; using std::log10; typedef typename NumTraits::Real Real; return int(ceil(internal::default_digits_impl::run() * log10(2) + 1)); } }; template struct default_max_digits10_impl // Integer { EIGEN_DEVICE_FUNC constexpr static int run() { return 0; } }; } // end namespace internal namespace numext { /** \internal bit-wise cast without changing the underlying bit representation. */ #if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr Tgt bit_cast(const Src& src) { return std::bit_cast(src); } #elif EIGEN_HAS_BUILTIN(__builtin_bit_cast) template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC constexpr Tgt bit_cast(const Src& src) { EIGEN_STATIC_ASSERT(std::is_trivially_copyable::value, THIS_TYPE_IS_NOT_SUPPORTED) EIGEN_STATIC_ASSERT(std::is_trivially_copyable::value, THIS_TYPE_IS_NOT_SUPPORTED) EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED) return __builtin_bit_cast(Tgt, src); } #else template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) { // The behaviour of memcpy is not specified for non-trivially copyable types EIGEN_STATIC_ASSERT(std::is_trivially_copyable::value, THIS_TYPE_IS_NOT_SUPPORTED) EIGEN_STATIC_ASSERT(std::is_trivially_copyable::value && std::is_default_constructible::value, THIS_TYPE_IS_NOT_SUPPORTED) EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED) Tgt tgt; // Load src into registers first. This allows the memcpy to be elided by CUDA. const Src staged = src; EIGEN_USING_STD(memcpy) memcpy(static_cast(&tgt), static_cast(&staged), sizeof(Tgt)); return tgt; } #endif } // namespace numext // clang-format off /** \class NumTraits * \ingroup Core_Module * * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. * * \tparam T the numeric type at hand * * This class stores enums, typedefs and static methods giving information about a numeric type. * * The provided data consists of: * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, * then \c Real is just a typedef to \a T. If \a T is `std::complex` then \c Real * is a typedef to \a U. * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is * only intended as a helper for code that needs to explicitly promote types. * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for * `std::complex`, Literal is defined as \a U. Of course, this type must be fully compatible with \a T. In doubt, * just use \a T here. * \li A typedef \c Nested giving the type to use to nest a value inside of the expression tree. If you don't know what * this means, just use \a T here. * \li An enum value \c IsComplex. It is equal to 1 if \a T is a \c std::complex type, and to 0 otherwise. * \li An enum value \c IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, and to \c 0 otherwise. * \li Enum values \c ReadCost, \c AddCost and \c MulCost representing a rough estimate of the number of CPU cycles needed to by * move / add / mul instructions respectively, assuming the data is already stored in CPU registers. Stay vague here. * No need to do architecture-specific stuff. If you don't know what this means, just use \c Eigen::HugeCost. * \li An enum value \c IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. * \li An enum value \c RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must be * called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. * \li An epsilon() function which, unlike * `std::numeric_limits::epsilon()`, it returns a \c Real instead of a \a T. * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default value by the fuzzy * comparison operators. * \li highest() and lowest() functions returning the highest and lowest possible values respectively. * \li digits() function returning the number of radix digits (non-sign digits for integers, mantissa for floating-point). * This is the analogue of * `std::numeric_limits::digits` which is used as the default implementation if specialized. * \li digits10() function returning the number of decimal digits that can be represented without change. This is the * analogue of * `std::numeric_limits::digits10` which is used as the default implementation if specialized. * \li max_digits10() function returning the number of decimal digits required to uniquely represent all distinct values * of the type. This is the analogue of `std::numeric_limits::max_digits10` * which is used as the default implementation if specialized. * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively, * such that the radix raised to the power exponent-1 is a normalized floating-point number. These are equivalent * to * `std::numeric_limits::min_exponent`/`std::numeric_limits::max_exponent`. * \li infinity() function returning a representation of positive infinity, if available. * \li quiet_NaN() function returning a non-signaling "not-a-number", if available. */ // clang-format on template struct GenericNumTraits { enum { IsInteger = std::numeric_limits::is_integer, IsSigned = std::numeric_limits::is_signed, IsComplex = 0, RequireInitialization = internal::is_arithmetic::value ? 0 : 1, ReadCost = 1, AddCost = 1, MulCost = 1 }; typedef T Real; typedef std::conditional_t, T> NonInteger; typedef T Nested; typedef T Literal; EIGEN_DEVICE_FUNC constexpr static Real epsilon() { return numext::numeric_limits::epsilon(); } EIGEN_DEVICE_FUNC constexpr static int digits10() { return internal::default_digits10_impl::run(); } EIGEN_DEVICE_FUNC constexpr static int max_digits10() { return internal::default_max_digits10_impl::run(); } EIGEN_DEVICE_FUNC constexpr static int digits() { return internal::default_digits_impl::run(); } EIGEN_DEVICE_FUNC constexpr static int min_exponent() { return numext::numeric_limits::min_exponent; } EIGEN_DEVICE_FUNC constexpr static int max_exponent() { return numext::numeric_limits::max_exponent; } EIGEN_DEVICE_FUNC constexpr static Real dummy_precision() { // make sure to override this for floating-point types return Real(0); } EIGEN_DEVICE_FUNC constexpr static T highest() { return (numext::numeric_limits::max)(); } EIGEN_DEVICE_FUNC constexpr static T lowest() { return (numext::numeric_limits::lowest)(); } EIGEN_DEVICE_FUNC constexpr static T infinity() { return numext::numeric_limits::infinity(); } EIGEN_DEVICE_FUNC constexpr static T quiet_NaN() { return numext::numeric_limits::quiet_NaN(); } }; template struct NumTraits : GenericNumTraits {}; template <> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC constexpr static float dummy_precision() { return 1e-5f; } }; template <> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC constexpr static double dummy_precision() { return 1e-12; } }; // GPU devices treat `long double` as `double`. #ifndef EIGEN_GPU_COMPILE_PHASE template <> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC constexpr static long double dummy_precision() { return static_cast(1e-15l); } #if defined(EIGEN_ARCH_PPC) && (__LDBL_MANT_DIG__ == 106) // PowerPC double double causes issues with some values EIGEN_DEVICE_FUNC constexpr static long double epsilon() { // 2^(-(__LDBL_MANT_DIG__)+1) return static_cast(2.4651903288156618919116517665087e-32l); } #endif }; #endif template struct NumTraits > : GenericNumTraits > { typedef Real_ Real; typedef typename NumTraits::Literal Literal; enum { IsComplex = 1, IsSigned = NumTraits::IsSigned, RequireInitialization = NumTraits::RequireInitialization, ReadCost = 2 * NumTraits::ReadCost, AddCost = 2 * NumTraits::AddCost, MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost }; EIGEN_DEVICE_FUNC constexpr static Real epsilon() { return NumTraits::epsilon(); } EIGEN_DEVICE_FUNC constexpr static Real dummy_precision() { return NumTraits::dummy_precision(); } EIGEN_DEVICE_FUNC constexpr static int digits10() { return NumTraits::digits10(); } EIGEN_DEVICE_FUNC constexpr static int max_digits10() { return NumTraits::max_digits10(); } }; template struct NumTraits > { typedef Array ArrayType; typedef typename NumTraits::Real RealScalar; typedef Array Real; typedef typename NumTraits::NonInteger NonIntegerScalar; typedef Array NonInteger; typedef ArrayType& Nested; typedef typename NumTraits::Literal Literal; enum { IsComplex = NumTraits::IsComplex, IsInteger = NumTraits::IsInteger, IsSigned = NumTraits::IsSigned, RequireInitialization = 1, ReadCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits::ReadCost), AddCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits::AddCost), MulCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * int(NumTraits::MulCost) }; EIGEN_DEVICE_FUNC constexpr static RealScalar epsilon() { return NumTraits::epsilon(); } EIGEN_DEVICE_FUNC constexpr static RealScalar dummy_precision() { return NumTraits::dummy_precision(); } constexpr static int digits10() { return NumTraits::digits10(); } constexpr static int max_digits10() { return NumTraits::max_digits10(); } }; template <> struct NumTraits : GenericNumTraits { enum { RequireInitialization = 1, ReadCost = HugeCost, AddCost = HugeCost, MulCost = HugeCost }; constexpr static int digits10() { return 0; } constexpr static int max_digits10() { return 0; } private: static inline std::string epsilon(); static inline std::string dummy_precision(); static inline std::string lowest(); static inline std::string highest(); static inline std::string infinity(); static inline std::string quiet_NaN(); }; // Empty specialization for void to allow template specialization based on NumTraits::Real with T==void and SFINAE. template <> struct NumTraits {}; template <> struct NumTraits : GenericNumTraits {}; } // end namespace Eigen #endif // EIGEN_NUMTRAITS_H