// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2021 Rohit Santhanam // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_GPU #include "main.h" #include using Eigen::Tensor; template void test_gpu_numext() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = 101; float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); bool* d_res_bfloat16 = (bool*)gpu_device.allocate(num_elem * sizeof(bool)); bool* d_res_float = (bool*)gpu_device.allocate(num_elem * sizeof(bool)); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16(d_res_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, num_elem); gpu_float.device(gpu_device) = gpu_float.random() - gpu_float.constant(0.5f); gpu_res_float.device(gpu_device) = gpu_float.unaryExpr(Eigen::internal::scalar_isnan_op()); // Test bfloat16 specific isnan op. gpu_res_bfloat16.device(gpu_device) = gpu_float.cast().unaryExpr(Eigen::internal::scalar_isnan_op()); Tensor bfloat16_prec(num_elem); Tensor full_prec(num_elem); gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, num_elem * sizeof(bool)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem * sizeof(bool)); gpu_device.synchronize(); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_EQUAL(full_prec(i), bfloat16_prec(i)); } gpu_device.deallocate(d_float); gpu_device.deallocate(d_res_bfloat16); gpu_device.deallocate(d_res_float); } #ifdef EIGEN_HAS_GPU_BF16 template void test_gpu_conversion() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = 101; float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::bfloat16* d_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); float* d_conv = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_bfloat16(d_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_conv(d_conv, num_elem); gpu_float.device(gpu_device) = gpu_float.random(); gpu_bfloat16.device(gpu_device) = gpu_float.cast(); gpu_conv.device(gpu_device) = gpu_bfloat16.cast(); Tensor initial(num_elem); Tensor final(num_elem); gpu_device.memcpyDeviceToHost(initial.data(), d_float, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(final.data(), d_conv, num_elem * sizeof(float)); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(static_cast(initial(i)), static_cast(final(i))); } gpu_device.deallocate(d_float); gpu_device.deallocate(d_bfloat16); gpu_device.deallocate(d_conv); } template void test_gpu_unary() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = 101; float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_bfloat16 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16(d_res_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, num_elem); gpu_float.device(gpu_device) = gpu_float.random() - gpu_float.constant(0.5f); gpu_float.device(gpu_device) = gpu_float.cast().cast(); gpu_res_float.device(gpu_device) = gpu_float.abs(); gpu_res_bfloat16.device(gpu_device) = gpu_float.cast().abs().cast(); Tensor bfloat16_prec(num_elem); Tensor full_prec(num_elem); gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem * sizeof(float)); gpu_device.synchronize(); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(full_prec(i), bfloat16_prec(i)); } gpu_device.deallocate(d_float); gpu_device.deallocate(d_res_bfloat16); gpu_device.deallocate(d_res_float); } template void test_gpu_elementwise() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = 101; float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_bfloat16 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::TensorMap, Eigen::Aligned> gpu_float1(d_float1, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_float2(d_float2, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16(d_res_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, num_elem); gpu_float1.device(gpu_device) = gpu_float1.random(); gpu_float1.device(gpu_device) = gpu_float1.cast().cast(); gpu_float2.device(gpu_device) = gpu_float2.random(); gpu_float2.device(gpu_device) = gpu_float2.cast().cast(); gpu_res_float.device(gpu_device) = (gpu_float1 + gpu_float2) * gpu_float1; gpu_res_bfloat16.device(gpu_device) = ((gpu_float1.cast() + gpu_float2.cast()) * gpu_float1.cast()) .cast(); Tensor bfloat16_prec(num_elem); Tensor full_prec(num_elem); gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem * sizeof(float)); gpu_device.synchronize(); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(static_cast(full_prec(i)), static_cast(bfloat16_prec(i))); } gpu_device.deallocate(d_float1); gpu_device.deallocate(d_float2); gpu_device.deallocate(d_res_bfloat16); gpu_device.deallocate(d_res_float); } template void test_gpu_trancendental() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = 101; float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_float3 = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::bfloat16* d_res1_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res1_float = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res2_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res2_float = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res3_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res3_float = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::TensorMap, Eigen::Aligned> gpu_float1(d_float1, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_float2(d_float2, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_float3(d_float3, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res1_bfloat16(d_res1_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res1_float(d_res1_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res2_bfloat16(d_res2_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res2_float(d_res2_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res3_bfloat16(d_res3_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res3_float(d_res3_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res4_bfloat16(d_res3_bfloat16, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res4_float(d_res3_float, num_elem); gpu_float1.device(gpu_device) = gpu_float1.random() - gpu_float1.constant(0.5f); gpu_float1.device(gpu_device) = gpu_float1.cast().cast(); gpu_float2.device(gpu_device) = gpu_float2.random() + gpu_float1.constant(0.5f); gpu_float2.device(gpu_device) = gpu_float2.cast().cast(); gpu_float3.device(gpu_device) = gpu_float3.random(); gpu_float3.device(gpu_device) = gpu_float3.cast().cast(); gpu_res1_float.device(gpu_device) = gpu_float1.exp().cast(); gpu_res2_float.device(gpu_device) = gpu_float2.log().cast(); gpu_res3_float.device(gpu_device) = gpu_float3.log1p().cast(); gpu_res4_float.device(gpu_device) = gpu_float3.expm1().cast(); gpu_res1_bfloat16.device(gpu_device) = gpu_float1.cast(); gpu_res1_bfloat16.device(gpu_device) = gpu_res1_bfloat16.exp(); gpu_res2_bfloat16.device(gpu_device) = gpu_float2.cast(); gpu_res2_bfloat16.device(gpu_device) = gpu_res2_bfloat16.log(); gpu_res3_bfloat16.device(gpu_device) = gpu_float3.cast(); gpu_res3_bfloat16.device(gpu_device) = gpu_res3_bfloat16.log1p(); gpu_res3_bfloat16.device(gpu_device) = gpu_float3.cast(); gpu_res3_bfloat16.device(gpu_device) = gpu_res3_bfloat16.expm1(); Tensor input1(num_elem); Tensor bfloat16_prec1(num_elem); Tensor full_prec1(num_elem); Tensor input2(num_elem); Tensor bfloat16_prec2(num_elem); Tensor full_prec2(num_elem); Tensor input3(num_elem); Tensor bfloat16_prec3(num_elem); Tensor full_prec3(num_elem); gpu_device.memcpyDeviceToHost(input1.data(), d_float1, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(input2.data(), d_float2, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(input3.data(), d_float3, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(bfloat16_prec1.data(), d_res1_bfloat16, num_elem * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec1.data(), d_res1_float, num_elem * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(bfloat16_prec2.data(), d_res2_bfloat16, num_elem * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec2.data(), d_res2_float, num_elem * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(bfloat16_prec3.data(), d_res3_bfloat16, num_elem * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec3.data(), d_res3_float, num_elem * sizeof(Eigen::bfloat16)); gpu_device.synchronize(); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(full_prec1(i), bfloat16_prec1(i)); } for (int i = 0; i < num_elem; ++i) { if (std::abs(input2(i) - 1.f) < 0.05f) // log lacks accuracy nearby 1 VERIFY_IS_APPROX(full_prec2(i) + Eigen::bfloat16(0.1f), bfloat16_prec2(i) + Eigen::bfloat16(0.1f)); else VERIFY_IS_APPROX(full_prec2(i), bfloat16_prec2(i)); } for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(full_prec3(i), bfloat16_prec3(i)); } gpu_device.deallocate(d_float1); gpu_device.deallocate(d_float2); gpu_device.deallocate(d_float3); gpu_device.deallocate(d_res1_bfloat16); gpu_device.deallocate(d_res1_float); gpu_device.deallocate(d_res2_bfloat16); gpu_device.deallocate(d_res2_float); gpu_device.deallocate(d_res3_float); gpu_device.deallocate(d_res3_bfloat16); } template void test_gpu_contractions() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int rows = 23; int cols = 23; int num_elem = rows * cols; float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::bfloat16* d_res_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res_float = (Eigen::bfloat16*)gpu_device.allocate(num_elem * sizeof(Eigen::bfloat16)); Eigen::TensorMap, Eigen::Aligned> gpu_float1(d_float1, rows, cols); Eigen::TensorMap, Eigen::Aligned> gpu_float2(d_float2, rows, cols); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16(d_res_bfloat16, rows, cols); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, rows, cols); gpu_float1.device(gpu_device) = gpu_float1.random() - gpu_float1.constant(0.5f); gpu_float2.device(gpu_device) = gpu_float2.random() - gpu_float2.constant(0.5f); typedef Tensor::DimensionPair DimPair; Eigen::array dims(DimPair(1, 0)); gpu_res_float.device(gpu_device) = gpu_float1.contract(gpu_float2, dims).cast(); gpu_res_bfloat16.device(gpu_device) = gpu_float1.cast().contract(gpu_float2.cast(), dims); Tensor bfloat16_prec(rows, cols); Tensor full_prec(rows, cols); gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, num_elem * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem * sizeof(Eigen::bfloat16)); gpu_device.synchronize(); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { if (numext::abs(full_prec(i, j) - bfloat16_prec(i, j)) > Eigen::bfloat16(1e-2f)) { VERIFY_IS_APPROX(full_prec(i, j), bfloat16_prec(i, j)); } } } gpu_device.deallocate(d_float1); gpu_device.deallocate(d_float2); gpu_device.deallocate(d_res_bfloat16); gpu_device.deallocate(d_res_float); } template void test_gpu_reductions(int size1, int size2, int redux) { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = size1 * size2; int result_size = (redux == 1 ? size1 : size2); float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::bfloat16* d_res_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(result_size * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res_float = (Eigen::bfloat16*)gpu_device.allocate(result_size * sizeof(Eigen::bfloat16)); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, size1, size2); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16(d_res_bfloat16, result_size); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, result_size); gpu_float.device(gpu_device) = gpu_float.random() * 2.0f; Eigen::array redux_dim = {redux}; gpu_res_float.device(gpu_device) = gpu_float.sum(redux_dim).cast(); gpu_res_bfloat16.device(gpu_device) = gpu_float.cast().sum(redux_dim); Tensor bfloat16_prec(result_size); Tensor full_prec(result_size); gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, result_size * sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, result_size * sizeof(Eigen::bfloat16)); gpu_device.synchronize(); for (int i = 0; i < result_size; ++i) { VERIFY_IS_APPROX(full_prec(i), bfloat16_prec(i)); } gpu_device.deallocate(d_float); gpu_device.deallocate(d_res_bfloat16); gpu_device.deallocate(d_res_float); } template void test_gpu_reductions() { test_gpu_reductions(13, 13, 0); test_gpu_reductions(13, 13, 1); test_gpu_reductions(35, 36, 0); test_gpu_reductions(35, 36, 1); test_gpu_reductions(36, 35, 0); test_gpu_reductions(36, 35, 1); } template void test_gpu_full_reductions() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int size = 13; int num_elem = size * size; float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::bfloat16* d_res_bfloat16 = (Eigen::bfloat16*)gpu_device.allocate(1 * sizeof(Eigen::bfloat16)); Eigen::bfloat16* d_res_float = (Eigen::bfloat16*)gpu_device.allocate(1 * sizeof(Eigen::bfloat16)); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, size, size); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16(d_res_bfloat16); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float); gpu_float.device(gpu_device) = gpu_float.random(); gpu_res_float.device(gpu_device) = gpu_float.sum().cast(); gpu_res_bfloat16.device(gpu_device) = gpu_float.cast().sum(); Tensor bfloat16_prec; Tensor full_prec; gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, sizeof(Eigen::bfloat16)); gpu_device.synchronize(); VERIFY_IS_APPROX(full_prec(), bfloat16_prec()); gpu_res_float.device(gpu_device) = gpu_float.maximum().cast(); gpu_res_bfloat16.device(gpu_device) = gpu_float.cast().maximum(); gpu_device.memcpyDeviceToHost(bfloat16_prec.data(), d_res_bfloat16, sizeof(Eigen::bfloat16)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, sizeof(Eigen::bfloat16)); gpu_device.synchronize(); VERIFY_IS_APPROX(full_prec(), bfloat16_prec()); gpu_device.deallocate(d_float); gpu_device.deallocate(d_res_bfloat16); gpu_device.deallocate(d_res_float); } template void test_gpu_forced_evals() { Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); int num_elem = 101; float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_bfloat16_1 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_bfloat16_2 = (float*)gpu_device.allocate(num_elem * sizeof(float)); float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float)); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_bfloat16_1(d_res_bfloat16_1, num_elem); Eigen::TensorMap, Eigen::Unaligned> gpu_res_bfloat16_2(d_res_bfloat16_2, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, num_elem); Eigen::array no_bcast; no_bcast[0] = 1; gpu_float.device(gpu_device) = gpu_float.random() - gpu_float.constant(0.5f); gpu_float.device(gpu_device) = gpu_float.cast().cast(); gpu_res_float.device(gpu_device) = gpu_float.abs(); gpu_res_bfloat16_1.device(gpu_device) = gpu_float.cast().abs().eval().cast(); gpu_res_bfloat16_2.device(gpu_device) = gpu_float.cast().abs().broadcast(no_bcast).eval().cast(); Tensor bfloat16_prec1(num_elem); Tensor bfloat16_prec2(num_elem); Tensor full_prec(num_elem); gpu_device.memcpyDeviceToHost(bfloat16_prec1.data(), d_res_bfloat16_1, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(bfloat16_prec2.data(), d_res_bfloat16_2, num_elem * sizeof(float)); gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem * sizeof(float)); gpu_device.synchronize(); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(full_prec(i), bfloat16_prec1(i)); VERIFY_IS_APPROX(full_prec(i), bfloat16_prec2(i)); } gpu_device.deallocate(d_float); gpu_device.deallocate(d_res_bfloat16_1); gpu_device.deallocate(d_res_bfloat16_2); gpu_device.deallocate(d_res_float); } #endif EIGEN_DECLARE_TEST(cxx11_tensor_of_bfloat16_gpu) { CALL_SUBTEST_1(test_gpu_numext()); // The reduction unit tests have been excluded until a working // implementation to expand the accumulator data type to float32 // is available. // TODO: add reduction unit tests #ifdef EIGEN_HAS_GPU_BF16 CALL_SUBTEST_2(test_gpu_conversion()); CALL_SUBTEST_3(test_gpu_unary()); CALL_SUBTEST_4(test_gpu_elementwise()); CALL_SUBTEST_5(test_gpu_trancendental()); CALL_SUBTEST_6(test_gpu_contractions()); CALL_SUBTEST_7(test_gpu_reductions()); CALL_SUBTEST_8(test_gpu_full_reductions()); CALL_SUBTEST_9(test_gpu_forced_evals()); #else std::cout << "bfloat16 floats are not supported by this version of gpu: skipping the test" << std::endl; #endif }