// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include #include "main.h" // suppress annoying unsigned integer warnings template ::IsSigned> struct negative_or_zero_impl { static Scalar run(const Scalar& a) { return -a; } }; template struct negative_or_zero_impl { static Scalar run(const Scalar&) { return 0; } }; template Scalar negative_or_zero(const Scalar& a) { return negative_or_zero_impl::run(a); } template ::IsInteger,int> = 0> std::vector special_values() { const Scalar zero = Scalar(0); const Scalar one = Scalar(1); const Scalar two = Scalar(2); const Scalar three = Scalar(3); const Scalar min = (std::numeric_limits::min)(); const Scalar max = (std::numeric_limits::max)(); return { zero, min, one, two, three, max }; } template ::IsInteger, int> = 0> std::vector special_values() { const Scalar zero = Scalar(0); const Scalar eps = Eigen::NumTraits::epsilon(); const Scalar one = Scalar(1); const Scalar two = Scalar(2); const Scalar three = Scalar(3); const Scalar sqrt_half = Scalar(std::sqrt(0.5)); const Scalar sqrt2 = Scalar(std::sqrt(2)); const Scalar inf = Eigen::NumTraits::infinity(); const Scalar nan = Eigen::NumTraits::quiet_NaN(); const Scalar denorm_min = std::numeric_limits::denorm_min(); const Scalar min = (std::numeric_limits::min)(); const Scalar max = (std::numeric_limits::max)(); const Scalar max_exp = (static_cast(int(Eigen::NumTraits::max_exponent())) * Scalar(EIGEN_LN2)) / eps; return { zero, denorm_min, min, eps, sqrt_half, one, sqrt2, two, three, max_exp, max, inf, nan }; } template void special_value_pairs(Array& x, Array& y) { std::vector abs_vals = special_values(); const Index abs_cases = (Index)abs_vals.size(); const Index num_cases = 2*abs_cases * 2*abs_cases; // ensure both vectorized and non-vectorized paths taken const Index num_repeats = 2 * (Index)internal::packet_traits::size + 1; x.resize(num_repeats, num_cases); y.resize(num_repeats, num_cases); int count = 0; for (Index i = 0; i < abs_cases; ++i) { const Scalar abs_x = abs_vals[i]; for (Index sign_x = 0; sign_x < 2; ++sign_x) { Scalar x_case = sign_x == 0 ? -abs_x : abs_x; for (Index j = 0; j < abs_cases; ++j) { const Scalar abs_y = abs_vals[j]; for (Index sign_y = 0; sign_y < 2; ++sign_y) { Scalar y_case = sign_y == 0 ? -abs_y : abs_y; for (Index repeat = 0; repeat < num_repeats; ++repeat) { x(repeat, count) = x_case; y(repeat, count) = y_case; } ++count; } } } } } template void binary_op_test(std::string name, Fn fun, RefFn ref) { const Scalar tol = test_precision(); Array x; Array y; special_value_pairs(x, y); Array actual = fun(x, y); bool all_pass = true; for (Index i = 0; i < x.rows(); ++i) { for (Index j = 0; j < x.cols(); ++j) { Scalar e = static_cast(ref(x(i,j), y(i,j))); Scalar a = actual(i, j); bool success = (a==e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); all_pass &= success; if (!success) { std::cout << name << "(" << x(i,j) << "," << y(i,j) << ") = " << a << " != " << e << std::endl; } } } VERIFY(all_pass); } #define BINARY_FUNCTOR_TEST_ARGS(fun) #fun, \ [](const auto& x_, const auto& y_) { return (Eigen::fun)(x_, y_); }, \ [](const auto& x_, const auto& y_) { return (std::fun)(x_, y_); } template void binary_ops_test() { binary_op_test(BINARY_FUNCTOR_TEST_ARGS(pow)); #ifndef EIGEN_COMP_MSVC binary_op_test(BINARY_FUNCTOR_TEST_ARGS(atan2)); #else binary_op_test( "atan2", [](const auto& x, const auto& y) { return Eigen::atan2(x, y); }, [](Scalar x, Scalar y) { auto t = Scalar(std::atan2(x, y)); // Work around MSVC return value on underflow. // |atan(y/x)| is bounded above by |y/x|, so on underflow return y/x according to POSIX spec. // MSVC otherwise returns denorm_min. if (EIGEN_PREDICT_FALSE(std::abs(t) == std::numeric_limits::denorm_min())) { return x / y; } return t; }); #endif } template void unary_op_test(std::string name, Fn fun, RefFn ref) { const Scalar tol = test_precision(); auto values = special_values(); Map> x(values.data(), values.size()); Array actual = fun(x); bool all_pass = true; for (Index i = 0; i < x.size(); ++i) { Scalar e = static_cast(ref(x(i))); Scalar a = actual(i); bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); all_pass &= success; if (!success) { std::cout << name << "(" << x(i) << ") = " << a << " != " << e << std::endl; } } VERIFY(all_pass); } #define UNARY_FUNCTOR_TEST_ARGS(fun) #fun, \ [](const auto& x) { return (Eigen::fun)(x); }, \ [](const auto& x) { return (std::fun)(x); } template void unary_ops_test() { unary_op_test(UNARY_FUNCTOR_TEST_ARGS(sqrt)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(exp)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(log)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(sin)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(cos)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(tan)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(asin)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(acos)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(atan)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(sinh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(cosh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(tanh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(asinh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(acosh)); unary_op_test(UNARY_FUNCTOR_TEST_ARGS(atanh)); /* FIXME: Enable when the behavior of rsqrt on denormals for half and double is fixed. unary_op_test("rsqrt", [](const auto& x) { return Eigen::rsqrt(x); }, [](Scalar x) { if (x >= 0 && x < (std::numeric_limits::min)()) { // rsqrt return +inf for positive subnormals. return NumTraits::infinity(); } else { return Scalar(std::sqrt(Scalar(1)/x)); } }); */ } template void pow_scalar_exponent_test() { using Int_t = typename internal::make_integer::type; const Scalar tol = test_precision(); std::vector abs_vals = special_values(); const Index num_vals = (Index)abs_vals.size(); Map> bases(abs_vals.data(), num_vals); bool all_pass = true; for (Scalar abs_exponent : abs_vals) { for (Scalar exponent : {-abs_exponent, abs_exponent}) { // test integer exponent code path bool exponent_is_integer = (numext::isfinite)(exponent) && (numext::round(exponent) == exponent) && (numext::abs(exponent) < static_cast(NumTraits::highest())); if (exponent_is_integer) { Int_t exponent_as_int = static_cast(exponent); Array eigenPow = bases.pow(exponent_as_int); for (Index j = 0; j < num_vals; j++) { Scalar e = static_cast(std::pow(bases(j), exponent)); Scalar a = eigenPow(j); bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); all_pass &= success; if (!success) { std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl; } } } else { // test floating point exponent code path Array eigenPow = bases.pow(exponent); for (Index j = 0; j < num_vals; j++) { Scalar e = static_cast(std::pow(bases(j), exponent)); Scalar a = eigenPow(j); bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); all_pass &= success; if (!success) { std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl; } } } } } VERIFY(all_pass); } template Scalar calc_overflow_threshold(const ScalarExponent exponent) { EIGEN_USING_STD(exp2); EIGEN_USING_STD(log2); EIGEN_STATIC_ASSERT((NumTraits::digits() < 2 * NumTraits::digits()), BASE_TYPE_IS_TOO_BIG); if (exponent < 2) return NumTraits::highest(); else { // base^e <= highest ==> base <= 2^(log2(highest)/e) // For floating-point types, consider the bound for integer values that can be reproduced exactly = 2 ^ digits double highest_bits = numext::mini(static_cast(NumTraits::digits()), static_cast(log2(NumTraits::highest()))); return static_cast( numext::floor(exp2(highest_bits / static_cast(exponent)))); } } template ::IsInteger> struct ref_pow { static Base run(Base base, Exponent exponent) { EIGEN_USING_STD(pow); return static_cast(pow(base, static_cast(exponent))); } }; template struct ref_pow { static Base run(Base base, Exponent exponent) { EIGEN_USING_STD(pow); return static_cast(pow(base, exponent)); } }; template void test_exponent(Exponent exponent) { const Base max_abs_bases = static_cast(10000); // avoid integer overflow in Base type Base threshold = calc_overflow_threshold(numext::abs(exponent)); // avoid numbers that can't be verified with std::pow double double_threshold = calc_overflow_threshold(numext::abs(exponent)); // use the lesser of these two thresholds Base testing_threshold = static_cast(threshold) < double_threshold ? threshold : static_cast(double_threshold); // test both vectorized and non-vectorized code paths const Index array_size = 2 * internal::packet_traits::size + 1; Base max_base = numext::mini(testing_threshold, max_abs_bases); Base min_base = negative_or_zero(max_base); ArrayX x(array_size), y(array_size); bool all_pass = true; for (Base base = min_base; base <= max_base; base++) { if (exponent < 0 && base == 0) continue; x.setConstant(base); y = x.pow(exponent); for (Base a : y) { Base e = ref_pow::run(base, exponent); bool pass = (a == e); if (!NumTraits::IsInteger) { pass = pass || (((numext::isfinite)(e) && internal::isApprox(a, e)) || ((numext::isnan)(a) && (numext::isnan)(e))); } all_pass &= pass; if (!pass) { std::cout << "pow(" << base << "," << exponent << ") = " << a << " != " << e << std::endl; } } } VERIFY(all_pass); } template void unary_pow_test() { Exponent max_exponent = static_cast(NumTraits::digits()); Exponent min_exponent = negative_or_zero(max_exponent); for (Exponent exponent = min_exponent; exponent < max_exponent; ++exponent) { test_exponent(exponent); } } void mixed_pow_test() { // The following cases will test promoting a smaller exponent type // to a wider base type. unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); // Although in the following cases the exponent cannot be represented exactly // in the base type, we do not perform a conversion, but implement // the operation using repeated squaring. unary_pow_test(); unary_pow_test(); // The following cases will test promoting a wider exponent type // to a narrower base type. This should compile but would generate a // deprecation warning: // unary_pow_test(); } void int_pow_test() { unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); // Although in the following cases the exponent cannot be represented exactly // in the base type, we do not perform a conversion, but implement the // operation using repeated squaring. unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); unary_pow_test(); } namespace Eigen { namespace internal { template struct test_signbit_op { Scalar constexpr operator()(const Scalar& a) const { return numext::signbit(a); } template inline Packet packetOp(const Packet& a) const { return psignbit(a); } }; template struct functor_traits> { enum { Cost = 1, PacketAccess = true }; //todo: define HasSignbit flag }; } // namespace internal } // namespace Eigen template void signbit_test() { const size_t size = 100 * internal::packet_traits::size; ArrayX x(size), y(size); x.setRandom(); std::vector special_vals = special_values(); for (size_t i = 0; i < special_vals.size(); i++) { x(2 * i + 0) = special_vals[i]; x(2 * i + 1) = negative_or_zero(special_vals[i]); } y = x.unaryExpr(internal::test_signbit_op()); bool all_pass = true; for (size_t i = 0; i < size; i++) { const Scalar ref_val = numext::signbit(x(i)); bool not_same = internal::predux_any(internal::bitwise_helper::bitwise_xor(ref_val, y(i))); if (not_same) std::cout << "signbit(" << x(i) << ") != " << y(i) << "\n"; all_pass = all_pass && !not_same; } VERIFY(all_pass); } void signbit_tests() { signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); signbit_test(); } template void array_generic(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef typename ArrayType::RealScalar RealScalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); if (NumTraits::IsInteger && NumTraits::IsSigned && !NumTraits::IsComplex) { // Here we cap the size of the values in m1 such that pow(3)/cube() // doesn't overflow and result in undefined behavior. Notice that because // pow(int, int) promotes its inputs and output to double (according to // the C++ standard), we have to make sure that the result fits in 53 bits // for int64, RealScalar max_val = numext::mini(RealScalar(std::cbrt(NumTraits::highest())), RealScalar(std::cbrt(1LL << 53)))/2; m1.array() = (m1.abs().array() <= max_val).select(m1, Scalar(max_val)); } ArrayType m2 = ArrayType::Random(rows, cols), m3(rows, cols); ArrayType m4 = m1; // copy constructor VERIFY_IS_APPROX(m1, m4); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = internal::random(), s2 = internal::random(); // scalar addition VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps m3 = m1; m4 = m1; ArrayType::Map(m4.data(), m4.rows(), m4.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 - m2); m3 = m1; m4 = m1; ArrayType::Map(m4.data(), m4.rows(), m4.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 + m2); m3 = m1; m4 = m1; ArrayType::Map(m4.data(), m4.rows(), m4.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 * m2); m3 = m1; m4 = m1; m2 = ArrayType::Random(rows,cols); m2 = (m2==0).select(1,m2); ArrayType::Map(m4.data(), m4.rows(), m4.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m4, m3 / m2); // reductions VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); using numext::abs; VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); // Conversion from scalar VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1)); VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1)); typedef Array FixedArrayType; { FixedArrayType f1(s1); VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2(numext::real(s1)); VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3((int)100*numext::real(s1)); VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); f1.setRandom(); FixedArrayType f4(f1.data()); VERIFY_IS_APPROX(f4, f1); } { FixedArrayType f1{s1}; VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2{numext::real(s1)}; VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3{(int)100*numext::real(s1)}; VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); f1.setRandom(); FixedArrayType f4{f1.data()}; VERIFY_IS_APPROX(f4, f1); } // pow VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(pow(m1,2), m1.square()); VERIFY_IS_APPROX(m1.pow(3), m1.cube()); VERIFY_IS_APPROX(pow(m1,3), m1.cube()); VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube()); ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square()); VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); // Check possible conflicts with 1D ctor typedef Array OneDArrayType; { OneDArrayType o1(rows); VERIFY(o1.size()==rows); OneDArrayType o2(static_cast(rows)); VERIFY(o2.size()==rows); } { OneDArrayType o1{rows}; VERIFY(o1.size()==rows); OneDArrayType o4{int(rows)}; VERIFY(o4.size()==rows); } // Check possible conflicts with 2D ctor typedef Array TwoDArrayType; typedef Array ArrayType2; { TwoDArrayType o1(rows,cols); VERIFY(o1.rows()==rows); VERIFY(o1.cols()==cols); TwoDArrayType o2(static_cast(rows),static_cast(cols)); VERIFY(o2.rows()==rows); VERIFY(o2.cols()==cols); ArrayType2 o3(rows,cols); VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols)); ArrayType2 o4(static_cast(rows),static_cast(cols)); VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols)); } { TwoDArrayType o1{rows,cols}; VERIFY(o1.rows()==rows); VERIFY(o1.cols()==cols); TwoDArrayType o2{int(rows),int(cols)}; VERIFY(o2.rows()==rows); VERIFY(o2.cols()==cols); ArrayType2 o3{rows,cols}; VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols)); ArrayType2 o4{int(rows),int(cols)}; VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols)); } } template void comparisons(const ArrayType& m) { using numext::abs; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(1,m4); // use operator overloads with default return type VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1 < m3).all() ); VERIFY(! (m1 > m3).all() ); } VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all()); // comparisons array to scalar VERIFY( (m1 != (m1(r,c)+1) ).any() ); VERIFY( (m1 > (m1(r,c)-1) ).any() ); VERIFY( (m1 < (m1(r,c)+1) ).any() ); VERIFY( (m1 == m1(r,c) ).any() ); // comparisons scalar to array VERIFY( ( (m1(r,c)+1) != m1).any() ); VERIFY( ( (m1(r,c)-1) < m1).any() ); VERIFY( ( (m1(r,c)+1) > m1).any() ); VERIFY( ( m1(r,c) == m1).any() ); // currently, any() / all() are not vectorized, so use VERIFY_IS_CWISE_EQUAL to test vectorized path // use typed comparisons, regardless of operator overload behavior typename ArrayType::ConstantReturnType typed_true = ArrayType::Constant(rows, cols, Scalar(1)); // (m1 + Scalar(1)) > m1).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1), typed_true); // (m1 - Scalar(1)) < m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1), typed_true); // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedEqual(m1 + Scalar(1)), typed_true); // (m1 - Scalar(1)) != m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedNotEqual(m1), typed_true); // (m1 <= m2 || m1 >= m2).all() VERIFY_IS_CWISE_EQUAL(m1.cwiseTypedGreaterOrEqual(m2) || m1.cwiseTypedLessOrEqual(m2), typed_true); // use boolean comparisons, regardless of operator overload behavior ArrayXX::ConstantReturnType bool_true = ArrayXX::Constant(rows, cols, true); // (m1 + Scalar(1)) > m1).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1), bool_true); // (m1 - Scalar(1)) < m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1), bool_true); // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseEqual(m1 + Scalar(1)), bool_true); // (m1 - Scalar(1)) != m1).all() VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseNotEqual(m1), bool_true); // (m1 <= m2 || m1 >= m2).all() VERIFY_IS_CWISE_EQUAL(m1.cwiseLessOrEqual(m2) || m1.cwiseGreaterOrEqual(m2), bool_true); // test typed comparisons with scalar argument VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseTypedEqual(Scalar(0)), typed_true); VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseTypedNotEqual(Scalar(0)), typed_true); VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1.minCoeff()), typed_true); VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1.maxCoeff()), typed_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedLessOrEqual(NumTraits::highest()), typed_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedGreaterOrEqual(Scalar(0)), typed_true); // test boolean comparisons with scalar argument VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseEqual(Scalar(0)), bool_true); VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseNotEqual(Scalar(0)), bool_true); VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1.minCoeff()), bool_true); VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1.maxCoeff()), bool_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseLessOrEqual(NumTraits::highest()), bool_true); VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseGreaterOrEqual(Scalar(0)), bool_true); // test Select VERIFY_IS_APPROX( (m1m2).select(m1,m2), m1.cwiseMax(m2) ); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); for (int j=0; j=ArrayType::Constant(rows,cols,mid)) .select(m1,0), m3); // even shorter version: VERIFY_IS_APPROX( (m1.abs()RealScalar(0.1)).count() == rows*cols); // and/or VERIFY( (m1RealScalar(0)).count() == 0); VERIFY( (m1=RealScalar(0)).count() == rows*cols); RealScalar a = m1.abs().mean(); VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count()); typedef Array ArrayOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); } template void array_real(const ArrayType& m) { using numext::abs; using std::sqrt; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4); Scalar s1 = internal::random(); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); VERIFY_IS_APPROX(m1.atan(), atan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.atan2(m2), atan2(m1,m2)); VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.rint(), rint(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); // avoid inf and NaNs so verification doesn't fail m3 = m4.abs(); VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3))); VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3))); VERIFY_IS_APPROX(m3.log(), log(m3)); VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); VERIFY_IS_APPROX(m3.log10(), log10(m3)); VERIFY_IS_APPROX(m3.log2(), log2(m3)); VERIFY((!(m1>m2) == (m1<=m2)).all()); VERIFY_IS_APPROX(sin(m1.asin()), m1); VERIFY_IS_APPROX(cos(m1.acos()), m1); VERIFY_IS_APPROX(tan(m1.atan()), m1); VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1)))); VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1)))); VERIFY_IS_APPROX(arg(m1), ((m1())*Scalar(std::acos(Scalar(-1)))); VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all()); VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all()); VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all()); VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all()); VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all()); VERIFY((Eigen::isinf)(m4/Scalar(0)).all()); VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all()); VERIFY_IS_APPROX(inverse(inverse(m4)),m4); VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); ArrayType tmp = m1.atan2(m2); for (Index i = 0; i < tmp.size(); ++i) { Scalar actual = tmp.array()(i); Scalar expected = Scalar(std::atan2(m1.array()(i), m2.array()(i))); VERIFY_IS_APPROX(actual, expected); } VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); if(!NumTraits::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); // shift argument of logarithm so that it is not zero Scalar smallNumber = NumTraits::dummy_precision(); VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber)); VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt()); // Avoid inf and NaN. m3 = (m1.square()::epsilon()).select(Scalar(1),m3); VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); // Test pow and atan2 on special IEEE values. unary_ops_test(); binary_ops_test(); pow_scalar_exponent_test(); VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10))); VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2))); // scalar by array division const RealScalar tiny = sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_CWISE_APPROX(s1/m1, s1 * m1.inverse()); // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); } template void array_complex(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag()); Array m3(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i,j) = sqrt(m1(i,j)); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.carg(), carg(m1)); VERIFY_IS_APPROX(arg(m1), carg(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); VERIFY_IS_APPROX(m1.log(), log(m1)); VERIFY_IS_APPROX(m1.log10(), log10(m1)); VERIFY_IS_APPROX(m1.log2(), log2(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); // Check for larger magnitude complex numbers that expm1 matches exp - 1. VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1)))); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m3(i,j) = std::atan2(m1(i,j).imag(), m1(i,j).real()); VERIFY_IS_APPROX(arg(m1), m3); VERIFY_IS_APPROX(carg(m1), m3); std::complex zero(0.0,0.0); VERIFY((Eigen::isnan)(m1*zero/zero).all()); #if EIGEN_COMP_MSVC // msvc complex division is not robust VERIFY((Eigen::isinf)(m4/RealScalar(0)).all()); #else #if EIGEN_COMP_CLANG // clang's complex division is notoriously broken too if((numext::isinf)(m4(0,0)/RealScalar(0))) { #endif VERIFY((Eigen::isinf)(m4/zero).all()); #if EIGEN_COMP_CLANG } else { VERIFY((Eigen::isinf)(m4.real()/zero.real()).all()); } #endif #endif // MSVC VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all()); VERIFY_IS_APPROX(inverse(inverse(m4)),m4); VERIFY_IS_APPROX(conj(m1.conjugate()), m1); VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag()))); VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); VERIFY_IS_APPROX(log10(m1), log(m1)/log(10)); VERIFY_IS_APPROX(log2(m1), log(m1)/log(2)); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1); // scalar by array division Scalar s1 = internal::random(); const RealScalar tiny = std::sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); // check inplace transpose m2 = m1; m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1.transpose()); m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1); // Check vectorized inplace transpose. ArrayType m5 = ArrayType::Random(131, 131); ArrayType m6 = m5; m6.transposeInPlace(); VERIFY_IS_APPROX(m6, m5.transpose()); } template void min_max(const ArrayType& m) { typedef typename ArrayType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); // min/max with array Scalar maxM1 = m1.maxCoeff(); Scalar minM1 = m1.minCoeff(); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1))); VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1))); // min/max with scalar input VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1)); VERIFY_IS_APPROX(m1, (m1.min)( maxM1)); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1)); VERIFY_IS_APPROX(m1, (m1.max)( minM1)); // min/max with various NaN propagation options. if (m1.size() > 1 && !NumTraits::IsInteger) { m1(0,0) = NumTraits::quiet_NaN(); maxM1 = m1.template maxCoeff(); minM1 = m1.template minCoeff(); VERIFY((numext::isnan)(maxM1)); VERIFY((numext::isnan)(minM1)); maxM1 = m1.template maxCoeff(); minM1 = m1.template minCoeff(); VERIFY(!(numext::isnan)(maxM1)); VERIFY(!(numext::isnan)(minM1)); } } template struct shift_left { template Scalar operator()(const Scalar& v) const { return (v << N); } }; template struct arithmetic_shift_right { template Scalar operator()(const Scalar& v) const { return (v >> N); } }; template struct signed_shift_test_impl { typedef typename ArrayType::Scalar Scalar; static constexpr size_t Size = sizeof(Scalar); static constexpr size_t MaxShift = (CHAR_BIT * Size) - 1; template static inline std::enable_if_t<(N > MaxShift), void> run(const ArrayType& ) {} template static inline std::enable_if_t<(N <= MaxShift), void> run(const ArrayType& m) { const Index rows = m.rows(); const Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); m2 = m1.unaryExpr(internal::scalar_shift_right_op()); m3 = m1.unaryExpr(arithmetic_shift_right()); VERIFY_IS_CWISE_EQUAL(m2, m3); m2 = m1.unaryExpr(internal::scalar_shift_left_op()); m3 = m1.unaryExpr(shift_left()); VERIFY_IS_CWISE_EQUAL(m2, m3); run(m); } }; template void signed_shift_test(const ArrayType& m) { signed_shift_test_impl::run(m); } template struct typed_logicals_test_impl { using Scalar = typename ArrayType::Scalar; static bool scalar_to_bool(const Scalar& x) { return x != Scalar(0); } static Scalar bool_to_scalar(bool x) { return x ? Scalar(1) : Scalar(0); } static Scalar eval_bool_and(const Scalar& x, const Scalar& y) { return bool_to_scalar(scalar_to_bool(x) && scalar_to_bool(y)); } static Scalar eval_bool_or(const Scalar& x, const Scalar& y) { return bool_to_scalar(scalar_to_bool(x) || scalar_to_bool(y)); } static Scalar eval_bool_xor(const Scalar& x, const Scalar& y) { return bool_to_scalar(scalar_to_bool(x) != scalar_to_bool(y)); } static Scalar eval_bool_not(const Scalar& x) { return bool_to_scalar(!scalar_to_bool(x)); } static void run(const ArrayType& m) { Index rows = m.rows(); Index cols = m.cols(); ArrayType m1(rows, cols), m2(rows, cols), m3(rows, cols), m4(rows, cols); m1.setRandom(); m2.setRandom(); m1 *= ArrayX::Random(rows, cols).cast(); m2 *= ArrayX::Random(rows, cols).cast(); // test boolean and m3 = m1 && m2; m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_and(x, y); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test boolean or m3 = m1 || m2; m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_or(x, y); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test boolean xor m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op()); m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_xor(x, y); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test boolean not m3 = !m1; m4 = m1.unaryExpr([](const Scalar& x) { return eval_bool_not(x); }); VERIFY_IS_CWISE_EQUAL(m3, m4); for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); // test something more complicated m3 = m1 && m2; m4 = !(!m1 || !m2); VERIFY_IS_CWISE_EQUAL(m3, m4); m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op()); m4 = (!m1).binaryExpr((!m2), internal::scalar_boolean_xor_op()); VERIFY_IS_CWISE_EQUAL(m3, m4); const size_t bytes = size_t(rows) * size_t(cols) * sizeof(Scalar); std::vector m1_buffer(bytes), m2_buffer(bytes), m3_buffer(bytes), m4_buffer(bytes); std::memcpy(m1_buffer.data(), m1.data(), bytes); std::memcpy(m2_buffer.data(), m2.data(), bytes); // test bitwise and m3 = m1 & m2; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] & m2_buffer[i])); // test bitwise or m3 = m1 | m2; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] | m2_buffer[i])); // test bitwise xor m3 = m1 ^ m2; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] ^ m2_buffer[i])); // test bitwise not m3 = ~m1; std::memcpy(m3_buffer.data(), m3.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(~m1_buffer[i])); // test something more complicated m3 = m1 & m2; m4 = ~(~m1 | ~m2); std::memcpy(m3_buffer.data(), m3.data(), bytes); std::memcpy(m4_buffer.data(), m4.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); m3 = m1 ^ m2; m4 = (~m1) ^ (~m2); std::memcpy(m3_buffer.data(), m3.data(), bytes); std::memcpy(m4_buffer.data(), m4.data(), bytes); for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); } }; template void typed_logicals_test(const ArrayType& m) { typed_logicals_test_impl::run(m); } EIGEN_DECLARE_TEST(array_cwise) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_generic(Array()) ); CALL_SUBTEST_2( array_generic(Array22f()) ); CALL_SUBTEST_3( array_generic(Array44d()) ); CALL_SUBTEST_4( array_generic(ArrayXXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_5( array_generic(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( array_generic(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( array_generic(Array(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_7( signed_shift_test(ArrayXXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_7( signed_shift_test(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8( array_generic(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8( array_generic(Array(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( comparisons(Array()) ); CALL_SUBTEST_2( comparisons(Array22f()) ); CALL_SUBTEST_3( comparisons(Array44d()) ); CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( min_max(Array()) ); CALL_SUBTEST_2( min_max(Array22f()) ); CALL_SUBTEST_3( min_max(Array44d()) ); CALL_SUBTEST_5( min_max(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( min_max(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_real(Array()) ); CALL_SUBTEST_2( array_real(Array22f()) ); CALL_SUBTEST_3( array_real(Array44d()) ); CALL_SUBTEST_5( array_real(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_7( array_real(Array()) ); CALL_SUBTEST_8( array_real(Array()) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_5( array_complex(ArrayXXcd(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE)))); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_6( int_pow_test() ); CALL_SUBTEST_7( mixed_pow_test() ); CALL_SUBTEST_8( signbit_tests() ); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_2( typed_logicals_test(ArrayX(internal::random(1, EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( typed_logicals_test(ArrayX(internal::random(1, EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_3( typed_logicals_test(ArrayX(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_3( typed_logicals_test(ArrayX>(internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_3( typed_logicals_test(ArrayX>(internal::random(1, EIGEN_TEST_MAX_SIZE)))); } VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, int >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, float >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); typedef CwiseUnaryOp, ArrayXd > Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); }