#include USING_PART_OF_NAMESPACE_EIGEN namespace Eigen { template void echelon(MatrixBase& m) { for(int k = 0; k < m.diagonal().size(); k++) { int rowOfBiggest, colOfBiggest; int cornerRows = m.rows()-k, cornerCols = m.cols()-k; m.corner(BottomRight, cornerRows, cornerCols) .cwiseAbs() .maxCoeff(&rowOfBiggest, &colOfBiggest); m.row(k).swap(m.row(k+rowOfBiggest)); m.col(k).swap(m.col(k+colOfBiggest)); // important performance tip: // in a complex expression such as below it can be very important to fine-tune // exactly where evaluation occurs. The parentheses and .eval() below ensure // that the quotient is computed only once, and that the evaluation caused // by operator* occurs last. m.corner(BottomRight, cornerRows-1, cornerCols) -= m.col(k).end(cornerRows-1) * (m.row(k).end(cornerCols) / m(k,k)).eval(); } } template void doSomeRankPreservingOperations(MatrixBase& m) { for(int a = 0; a < 3*(m.rows()+m.cols()); a++) { double d = ei_random(-1,1); int i = ei_random(0,m.rows()-1); // i is a random row number int j; do { j = ei_random(0,m.rows()-1); } while (i==j); // j is another one (must be different) m.row(i) += d * m.row(j); i = ei_random(0,m.cols()-1); // i is a random column number do { j = ei_random(0,m.cols()-1); } while (i==j); // j is another one (must be different) m.col(i) += d * m.col(j); } } } // namespace Eigen using namespace std; int main(int, char **) { srand((unsigned int)time(0)); const int Rows = 6, Cols = 4; typedef Matrix Mat; const int N = Rows < Cols ? Rows : Cols; // start with a matrix m that's obviously of rank N-1 Mat m = Mat::identity(Rows, Cols); // args just in case of dyn. size m.row(0) = m.row(1) = m.row(0) + m.row(1); doSomeRankPreservingOperations(m); // now m is still a matrix of rank N-1 cout << "Here's the matrix m:" << endl << m << endl; cout << "Now let's echelon m:" << endl; echelon(m); cout << "Now m is:" << endl << m << endl; }