#ifndef TEST_SOLVERBASE_H #define TEST_SOLVERBASE_H template void check_solverbase(const MatrixType& matrix, const SolverType& solver, Index rows, Index cols, Index cols2) { // solve DstType m2 = DstType::Random(cols, cols2); RhsType m3 = matrix * m2; DstType solver_solution = DstType::Random(cols, cols2); solver._solve_impl(m3, solver_solution); VERIFY_IS_APPROX(m3, matrix * solver_solution); solver_solution = DstType::Random(cols, cols2); solver_solution = solver.solve(m3); VERIFY_IS_APPROX(m3, matrix * solver_solution); // test solve with transposed m3 = RhsType::Random(rows, cols2); m2 = matrix.transpose() * m3; RhsType solver_solution2 = RhsType::Random(rows, cols2); solver.template _solve_impl_transposed(m2, solver_solution2); VERIFY_IS_APPROX(m2, matrix.transpose() * solver_solution2); solver_solution2 = RhsType::Random(rows, cols2); solver_solution2 = solver.transpose().solve(m2); VERIFY_IS_APPROX(m2, matrix.transpose() * solver_solution2); // test solve with conjugate transposed m3 = RhsType::Random(rows, cols2); m2 = matrix.adjoint() * m3; solver_solution2 = RhsType::Random(rows, cols2); solver.template _solve_impl_transposed(m2, solver_solution2); VERIFY_IS_APPROX(m2, matrix.adjoint() * solver_solution2); solver_solution2 = RhsType::Random(rows, cols2); solver_solution2 = solver.adjoint().solve(m2); VERIFY_IS_APPROX(m2, matrix.adjoint() * solver_solution2); // test with temporary expression as rhs m2 = DstType::Random(cols, cols2); solver_solution = solver.solve(matrix * m2); VERIFY_IS_APPROX(matrix * m2, matrix * solver_solution); } #endif // TEST_SOLVERBASE_H