// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t #define EIGEN_USE_SYCL #include "main.h" #include using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; using Eigen::RowMajor; using Eigen::Tensor; template static void test_image_op_sycl(const Eigen::SyclDevice& sycl_device) { IndexType sizeDim1 = 245; IndexType sizeDim2 = 343; IndexType sizeDim3 = 577; array input_range = {{sizeDim1, sizeDim2, sizeDim3}}; array slice_range = {{sizeDim1 - 1, sizeDim2, sizeDim3}}; Tensor tensor1(input_range); Tensor tensor2(input_range); Tensor tensor3(slice_range); Tensor tensor3_cpu(slice_range); typedef Eigen::DSizes Index3; Index3 strides1(1L, 1L, 1L); Index3 indicesStart1(1L, 0L, 0L); Index3 indicesStop1(sizeDim1, sizeDim2, sizeDim3); Index3 strides2(1L, 1L, 1L); Index3 indicesStart2(0L, 0L, 0L); Index3 indicesStop2(sizeDim1 - 1, sizeDim2, sizeDim3); Eigen::DSizes sizes(sizeDim1 - 1, sizeDim2, sizeDim3); tensor1.setRandom(); tensor2.setRandom(); DataType* gpu_data1 = static_cast(sycl_device.allocate(tensor1.size() * sizeof(DataType))); DataType* gpu_data2 = static_cast(sycl_device.allocate(tensor2.size() * sizeof(DataType))); DataType* gpu_data3 = static_cast(sycl_device.allocate(tensor3.size() * sizeof(DataType))); TensorMap> gpu1(gpu_data1, input_range); TensorMap> gpu2(gpu_data2, input_range); TensorMap> gpu3(gpu_data3, slice_range); sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(), (tensor1.size()) * sizeof(DataType)); sycl_device.memcpyHostToDevice(gpu_data2, tensor2.data(), (tensor2.size()) * sizeof(DataType)); gpu3.device(sycl_device) = gpu1.slice(indicesStart1, sizes) - gpu2.slice(indicesStart2, sizes); sycl_device.memcpyDeviceToHost(tensor3.data(), gpu_data3, (tensor3.size()) * sizeof(DataType)); tensor3_cpu = tensor1.stridedSlice(indicesStart1, indicesStop1, strides1) - tensor2.stridedSlice(indicesStart2, indicesStop2, strides2); for (IndexType i = 0; i < slice_range[0]; ++i) { for (IndexType j = 0; j < slice_range[1]; ++j) { for (IndexType k = 0; k < slice_range[2]; ++k) { VERIFY_IS_EQUAL(tensor3_cpu(i, j, k), tensor3(i, j, k)); } } } sycl_device.deallocate(gpu_data1); sycl_device.deallocate(gpu_data2); sycl_device.deallocate(gpu_data3); } template void sycl_computing_test_per_device(dev_Selector s) { QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); test_image_op_sycl(sycl_device); } EIGEN_DECLARE_TEST(cxx11_tensor_image_op_sycl) { for (const auto& device : Eigen::get_sycl_supported_devices()) { CALL_SUBTEST(sycl_computing_test_per_device(device)); CALL_SUBTEST(sycl_computing_test_per_device(device)); #ifdef EIGEN_SYCL_DOUBLE_SUPPORT CALL_SUBTEST(sycl_computing_test_per_device(device)); #endif } }