// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include "random_without_cast_overflow.h" template <typename MatrixType> std::enable_if_t<(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1), void> check_index( const MatrixType& m) { VERIFY_RAISES_ASSERT(m[0]); VERIFY_RAISES_ASSERT((m + m)[0]); } template <typename MatrixType> std::enable_if_t<!(MatrixType::RowsAtCompileTime == 1 || MatrixType::ColsAtCompileTime == 1), void> check_index( const MatrixType& /*unused*/) {} template <typename MatrixType> void basicStuff(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; Index rows = m.rows(); Index cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); VectorType v1 = VectorType::Random(rows), vzero = VectorType::Zero(rows); SquareMatrixType sm1 = SquareMatrixType::Random(rows, rows), sm2(rows, rows); Scalar x = 0; while (x == Scalar(0)) x = internal::random<Scalar>(); Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); m1.coeffRef(r, c) = x; VERIFY_IS_APPROX(x, m1.coeff(r, c)); m1(r, c) = x; VERIFY_IS_APPROX(x, m1(r, c)); v1.coeffRef(r) = x; VERIFY_IS_APPROX(x, v1.coeff(r)); v1(r) = x; VERIFY_IS_APPROX(x, v1(r)); v1[r] = x; VERIFY_IS_APPROX(x, v1[r]); // test fetching with various index types. Index r1 = internal::random<Index>(0, numext::mini(Index(127), rows - 1)); x = v1(static_cast<char>(r1)); x = v1(static_cast<signed char>(r1)); x = v1(static_cast<unsigned char>(r1)); x = v1(static_cast<signed short>(r1)); x = v1(static_cast<unsigned short>(r1)); x = v1(static_cast<signed int>(r1)); x = v1(static_cast<unsigned int>(r1)); x = v1(static_cast<signed long>(r1)); x = v1(static_cast<unsigned long>(r1)); if (sizeof(Index) >= sizeof(long long int)) x = v1(static_cast<long long int>(r1)); if (sizeof(Index) >= sizeof(unsigned long long int)) x = v1(static_cast<unsigned long long int>(r1)); VERIFY_IS_APPROX(v1, v1); VERIFY_IS_NOT_APPROX(v1, 2 * v1); VERIFY_IS_MUCH_SMALLER_THAN(vzero, v1); VERIFY_IS_MUCH_SMALLER_THAN(vzero, v1.squaredNorm()); VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); VERIFY_IS_APPROX(vzero, v1 - v1); VERIFY_IS_APPROX(m1, m1); VERIFY_IS_NOT_APPROX(m1, 2 * m1); VERIFY_IS_MUCH_SMALLER_THAN(mzero, m1); VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); VERIFY_IS_APPROX(mzero, m1 - m1); // always test operator() on each read-only expression class, // in order to check const-qualifiers. // indeed, if an expression class (here Zero) is meant to be read-only, // hence has no _write() method, the corresponding MatrixBase method (here zero()) // should return a const-qualified object so that it is the const-qualified // operator() that gets called, which in turn calls _read(). VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols)(r, c), static_cast<Scalar>(1)); // now test copying a row-vector into a (column-)vector and conversely. square.col(r) = square.row(r).eval(); Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); rv = square.row(r); cv = square.col(r); VERIFY_IS_APPROX(rv, cv.transpose()); if (cols != 1 && rows != 1 && MatrixType::SizeAtCompileTime != Dynamic) { VERIFY_RAISES_ASSERT(m1 = (m2.block(0, 0, rows - 1, cols - 1))); } if (cols != 1 && rows != 1) { check_index(m1); } VERIFY_IS_APPROX(m3 = m1, m1); MatrixType m4; VERIFY_IS_APPROX(m4 = m1, m1); m3.real() = m1.real(); VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); // check == / != operators VERIFY(m1 == m1); VERIFY(m1 != m2); VERIFY(!(m1 == m2)); VERIFY(!(m1 != m1)); m1 = m2; VERIFY(m1 == m2); VERIFY(!(m1 != m2)); // check automatic transposition sm2.setZero(); for (Index i = 0; i < rows; ++i) sm2.col(i) = sm1.row(i); VERIFY_IS_APPROX(sm2, sm1.transpose()); sm2.setZero(); for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() = sm1.row(i); VERIFY_IS_APPROX(sm2, sm1.transpose()); sm2.setZero(); for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() += sm1.row(i); VERIFY_IS_APPROX(sm2, sm1.transpose()); sm2.setZero(); for (Index i = 0; i < rows; ++i) sm2.col(i).noalias() -= sm1.row(i); VERIFY_IS_APPROX(sm2, -sm1.transpose()); // check ternary usage { bool b = internal::random<int>(0, 10) > 5; m3 = b ? m1 : m2; if (b) VERIFY_IS_APPROX(m3, m1); else VERIFY_IS_APPROX(m3, m2); m3 = b ? -m1 : m2; if (b) VERIFY_IS_APPROX(m3, -m1); else VERIFY_IS_APPROX(m3, m2); m3 = b ? m1 : -m2; if (b) VERIFY_IS_APPROX(m3, m1); else VERIFY_IS_APPROX(m3, -m2); } } template <typename MatrixType> void basicStuffComplex(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; Index rows = m.rows(); Index cols = m.cols(); Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); VERIFY(numext::real(s1) == numext::real_ref(s1)); VERIFY(numext::imag(s1) == numext::imag_ref(s1)); numext::real_ref(s1) = numext::real(s2); numext::imag_ref(s1) = numext::imag(s2); VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. RealMatrixType rm1 = RealMatrixType::Random(rows, cols), rm2 = RealMatrixType::Random(rows, cols); MatrixType cm(rows, cols); cm.real() = rm1; cm.imag() = rm2; VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); rm1.setZero(); rm2.setZero(); rm1 = cm.real(); rm2 = cm.imag(); VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); cm.real().setZero(); VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); } template <typename SrcScalar, typename TgtScalar> struct casting_test { static void run() { Matrix<SrcScalar, 4, 4> m; for (int i = 0; i < m.rows(); ++i) { for (int j = 0; j < m.cols(); ++j) { m(i, j) = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value(); } } Matrix<TgtScalar, 4, 4> n = m.template cast<TgtScalar>(); for (int i = 0; i < m.rows(); ++i) { for (int j = 0; j < m.cols(); ++j) { VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar, TgtScalar>(m(i, j)))); } } } }; template <typename SrcScalar, typename EnableIf = void> struct casting_test_runner { static void run() { casting_test<SrcScalar, bool>::run(); casting_test<SrcScalar, int8_t>::run(); casting_test<SrcScalar, uint8_t>::run(); casting_test<SrcScalar, int16_t>::run(); casting_test<SrcScalar, uint16_t>::run(); casting_test<SrcScalar, int32_t>::run(); casting_test<SrcScalar, uint32_t>::run(); casting_test<SrcScalar, int64_t>::run(); casting_test<SrcScalar, uint64_t>::run(); casting_test<SrcScalar, half>::run(); casting_test<SrcScalar, bfloat16>::run(); casting_test<SrcScalar, float>::run(); casting_test<SrcScalar, double>::run(); casting_test<SrcScalar, std::complex<float>>::run(); casting_test<SrcScalar, std::complex<double>>::run(); } }; template <typename SrcScalar> struct casting_test_runner<SrcScalar, std::enable_if_t<(NumTraits<SrcScalar>::IsComplex)>> { static void run() { // Only a few casts from std::complex<T> are defined. casting_test<SrcScalar, half>::run(); casting_test<SrcScalar, bfloat16>::run(); casting_test<SrcScalar, std::complex<float>>::run(); casting_test<SrcScalar, std::complex<double>>::run(); } }; void casting_all() { casting_test_runner<bool>::run(); casting_test_runner<int8_t>::run(); casting_test_runner<uint8_t>::run(); casting_test_runner<int16_t>::run(); casting_test_runner<uint16_t>::run(); casting_test_runner<int32_t>::run(); casting_test_runner<uint32_t>::run(); casting_test_runner<int64_t>::run(); casting_test_runner<uint64_t>::run(); casting_test_runner<half>::run(); casting_test_runner<bfloat16>::run(); casting_test_runner<float>::run(); casting_test_runner<double>::run(); casting_test_runner<std::complex<float>>::run(); casting_test_runner<std::complex<double>>::run(); } template <typename Scalar> void fixedSizeMatrixConstruction() { Scalar raw[4]; for (int k = 0; k < 4; ++k) raw[k] = internal::random<Scalar>(); { Matrix<Scalar, 4, 1> m(raw); Array<Scalar, 4, 1> a(raw); for (int k = 0; k < 4; ++k) VERIFY(m(k) == raw[k]); for (int k = 0; k < 4; ++k) VERIFY(a(k) == raw[k]); VERIFY_IS_EQUAL(m, (Matrix<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3]))); VERIFY((a == (Array<Scalar, 4, 1>(raw[0], raw[1], raw[2], raw[3]))).all()); } { Matrix<Scalar, 3, 1> m(raw); Array<Scalar, 3, 1> a(raw); for (int k = 0; k < 3; ++k) VERIFY(m(k) == raw[k]); for (int k = 0; k < 3; ++k) VERIFY(a(k) == raw[k]); VERIFY_IS_EQUAL(m, (Matrix<Scalar, 3, 1>(raw[0], raw[1], raw[2]))); VERIFY((a == Array<Scalar, 3, 1>(raw[0], raw[1], raw[2])).all()); } { Matrix<Scalar, 2, 1> m(raw), m2((DenseIndex(raw[0])), (DenseIndex(raw[1]))); Array<Scalar, 2, 1> a(raw), a2((DenseIndex(raw[0])), (DenseIndex(raw[1]))); for (int k = 0; k < 2; ++k) VERIFY(m(k) == raw[k]); for (int k = 0; k < 2; ++k) VERIFY(a(k) == raw[k]); VERIFY_IS_EQUAL(m, (Matrix<Scalar, 2, 1>(raw[0], raw[1]))); VERIFY((a == Array<Scalar, 2, 1>(raw[0], raw[1])).all()); for (int k = 0; k < 2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); for (int k = 0; k < 2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); } { Matrix<Scalar, 1, 2> m(raw), m2((DenseIndex(raw[0])), (DenseIndex(raw[1]))), m3((int(raw[0])), (int(raw[1]))), m4((float(raw[0])), (float(raw[1]))); Array<Scalar, 1, 2> a(raw), a2((DenseIndex(raw[0])), (DenseIndex(raw[1]))); for (int k = 0; k < 2; ++k) VERIFY(m(k) == raw[k]); for (int k = 0; k < 2; ++k) VERIFY(a(k) == raw[k]); VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 2>(raw[0], raw[1]))); VERIFY((a == Array<Scalar, 1, 2>(raw[0], raw[1])).all()); for (int k = 0; k < 2; ++k) VERIFY(m2(k) == DenseIndex(raw[k])); for (int k = 0; k < 2; ++k) VERIFY(a2(k) == DenseIndex(raw[k])); for (int k = 0; k < 2; ++k) VERIFY(m3(k) == int(raw[k])); for (int k = 0; k < 2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k]))); } { Matrix<Scalar, 1, 1> m(raw), m1(raw[0]), m2((DenseIndex(raw[0]))), m3((int(raw[0]))); Array<Scalar, 1, 1> a(raw), a1(raw[0]), a2((DenseIndex(raw[0]))); VERIFY(m(0) == raw[0]); VERIFY(a(0) == raw[0]); VERIFY(m1(0) == raw[0]); VERIFY(a1(0) == raw[0]); VERIFY(m2(0) == DenseIndex(raw[0])); VERIFY(a2(0) == DenseIndex(raw[0])); VERIFY(m3(0) == int(raw[0])); VERIFY_IS_EQUAL(m, (Matrix<Scalar, 1, 1>(raw[0]))); VERIFY((a == Array<Scalar, 1, 1>(raw[0])).all()); } } EIGEN_DECLARE_TEST(basicstuff) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(basicStuff(Matrix<float, 1, 1>())); CALL_SUBTEST_2(basicStuff(Matrix4d())); CALL_SUBTEST_3(basicStuff( MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_4(basicStuff( MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_5(basicStuff( MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_6(basicStuff(Matrix<float, 100, 100>())); CALL_SUBTEST_7(basicStuff(Matrix<long double, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_8(casting_all()); CALL_SUBTEST_3(basicStuffComplex( MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_5(basicStuffComplex( MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); } CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>()); CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>()); }