// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #include "sparse.h" template<typename Scalar> void initSPD(double density, Matrix<Scalar,Dynamic,Dynamic>& refMat, SparseMatrix<Scalar>& sparseMat) { Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols()); initSparse(density,refMat,sparseMat); refMat = refMat * refMat.adjoint(); for (int k=0; k<2; ++k) { initSparse(density,aux,sparseMat,ForceNonZeroDiag); refMat += aux * aux.adjoint(); } sparseMat.setZero(); for (int j=0 ; j<sparseMat.cols(); ++j) for (int i=j ; i<sparseMat.rows(); ++i) if (refMat(i,j)!=Scalar(0)) sparseMat.insert(i,j) = refMat(i,j); sparseMat.finalize(); } template<typename Scalar> void sparse_solvers(int rows, int cols) { double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; // Scalar eps = 1e-6; DenseVector vec1 = DenseVector::Random(rows); std::vector<Vector2i> zeroCoords; std::vector<Vector2i> nonzeroCoords; // test triangular solver { DenseVector vec2 = vec1, vec3 = vec1; SparseMatrix<Scalar> m2(rows, cols); DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); // lower - dense initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template triangularView<Lower>().solve(vec2), m2.template triangularView<Lower>().solve(vec3)); // upper - dense initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template triangularView<Upper>().solve(vec2), m2.template triangularView<Upper>().solve(vec3)); VERIFY_IS_APPROX(refMat2.conjugate().template triangularView<Upper>().solve(vec2), m2.conjugate().template triangularView<Upper>().solve(vec3)); { SparseMatrix<Scalar> cm2(m2); //Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr MappedSparseMatrix<Scalar> mm2(rows, cols, cm2.nonZeros(), cm2.outerIndexPtr(), cm2.innerIndexPtr(), cm2.valuePtr()); VERIFY_IS_APPROX(refMat2.conjugate().template triangularView<Upper>().solve(vec2), mm2.conjugate().template triangularView<Upper>().solve(vec3)); } // lower - transpose initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.transpose().template triangularView<Upper>().solve(vec2), m2.transpose().template triangularView<Upper>().solve(vec3)); // upper - transpose initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.transpose().template triangularView<Lower>().solve(vec2), m2.transpose().template triangularView<Lower>().solve(vec3)); SparseMatrix<Scalar> matB(rows, rows); DenseMatrix refMatB = DenseMatrix::Zero(rows, rows); // lower - sparse initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular); initSparse<Scalar>(density, refMatB, matB); refMat2.template triangularView<Lower>().solveInPlace(refMatB); m2.template triangularView<Lower>().solveInPlace(matB); VERIFY_IS_APPROX(matB.toDense(), refMatB); // upper - sparse initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular); initSparse<Scalar>(density, refMatB, matB); refMat2.template triangularView<Upper>().solveInPlace(refMatB); m2.template triangularView<Upper>().solveInPlace(matB); VERIFY_IS_APPROX(matB, refMatB); // test deprecated API initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); VERIFY_IS_APPROX(refMat2.template triangularView<Lower>().solve(vec2), m2.template triangularView<Lower>().solve(vec3)); } } void test_sparse_solvers() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(sparse_solvers<double>(8, 8) ); int s = internal::random<int>(1,300); CALL_SUBTEST_2(sparse_solvers<std::complex<double> >(s,s) ); CALL_SUBTEST_1(sparse_solvers<double>(s,s) ); } }