// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include template void svd(const MatrixType& m) { /* this test covers the following files: SVD.h */ typename MatrixType::Index rows = m.rows(); typename MatrixType::Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; MatrixType a = MatrixType::Random(rows,cols); Matrix x(cols,1), x2(cols,1); { SVD svd(a); MatrixType sigma = MatrixType::Zero(rows,cols); MatrixType matU = MatrixType::Zero(rows,rows); MatrixType matV = MatrixType::Zero(cols,cols); sigma.diagonal() = svd.singularValues(); matU = svd.matrixU(); VERIFY_IS_UNITARY(matU); matV = svd.matrixV(); VERIFY_IS_UNITARY(matV); VERIFY_IS_APPROX(a, matU * sigma * matV.transpose()); } if (rows>=cols) { SVD svd(a); Matrix b = Matrix::Random(rows,1); Matrix x = svd.solve(b); // evaluate normal equation which works also for least-squares solutions VERIFY_IS_APPROX(a.adjoint()*a*x,a.adjoint()*b); } if(rows==cols) { SVD svd(a); MatrixType unitary, positive; svd.computeUnitaryPositive(&unitary, &positive); VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); VERIFY_IS_APPROX(positive, positive.adjoint()); for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity VERIFY_IS_APPROX(unitary*positive, a); svd.computePositiveUnitary(&positive, &unitary); VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); VERIFY_IS_APPROX(positive, positive.adjoint()); for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity VERIFY_IS_APPROX(positive*unitary, a); } } template void svd_verify_assert() { MatrixType tmp; SVD svd; VERIFY_RAISES_ASSERT(svd.solve(tmp)) VERIFY_RAISES_ASSERT(svd.matrixU()) VERIFY_RAISES_ASSERT(svd.singularValues()) VERIFY_RAISES_ASSERT(svd.matrixV()) VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp)) VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp)) VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp)) VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp)) VERIFY_RAISES_ASSERT(SVD(10, 20)) } void test_svd() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( svd(Matrix3f()) ); CALL_SUBTEST_2( svd(Matrix4d()) ); int cols = ei_random(2,50); int rows = cols + ei_random(0,50); CALL_SUBTEST_3( svd(MatrixXf(rows,cols)) ); CALL_SUBTEST_4( svd(MatrixXd(rows,cols)) ); //complex are not implemented yet //CALL_SUBTEST(svd(MatrixXcd(6,6)) ); //CALL_SUBTEST(svd(MatrixXcf(3,3)) ); } CALL_SUBTEST_1( svd_verify_assert() ); CALL_SUBTEST_2( svd_verify_assert() ); CALL_SUBTEST_3( svd_verify_assert() ); CALL_SUBTEST_4( svd_verify_assert() ); }