// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2023 // Alejandro Acosta Codeplay Software Ltd. // Contact: // Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #define EIGEN_SYCL_HALF_SUPPORT #include "main.h" #include using Eigen::Tensor; using Eigen::SyclDevice; void test_gpu_numext(const Eigen::SyclDevice &sycl_device) { int num_elem = 101; float* d_float = static_cast(sycl_device.allocate(num_elem * sizeof(float))); bool* d_res_half = static_cast(sycl_device.allocate(num_elem * sizeof(bool))); bool* d_res_float = static_cast(sycl_device.allocate(num_elem * sizeof(bool))); Eigen::TensorMap, Eigen::Aligned> gpu_float(d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_half(d_res_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, num_elem); gpu_float.device(sycl_device) = gpu_float.random() - gpu_float.constant(0.5f); gpu_res_float.device(sycl_device) = gpu_float.unaryExpr(Eigen::internal::scalar_isnan_op()); gpu_res_half.device(sycl_device) = gpu_float.cast().unaryExpr(Eigen::internal::scalar_isnan_op()); Tensor half_prec(num_elem); Tensor full_prec(num_elem); sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half,num_elem * sizeof(bool)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float,num_elem * sizeof(bool)); for (int i = 0; i < num_elem; ++i) { std::cout << "Checking numext " << i << std::endl; VERIFY_IS_EQUAL(full_prec(i), half_prec(i)); } } void test_gpu_conversion(const Eigen::SyclDevice &sycl_device) { int num_elem = 101; float* d_float = static_cast(sycl_device.allocate(num_elem * sizeof(float))); Eigen::half* d_half = static_cast(sycl_device.allocate(num_elem * sizeof(Eigen::half))); float* d_conv = static_cast(sycl_device.allocate(num_elem * sizeof(float))); Eigen::TensorMap, Eigen::Aligned> gpu_float( d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_half( d_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_conv( d_conv, num_elem); gpu_float.device(sycl_device) = gpu_float.random(); gpu_half.device(sycl_device) = gpu_float.cast(); gpu_conv.device(sycl_device) = gpu_half.cast(); Tensor initial(num_elem); Tensor final(num_elem); sycl_device.memcpyDeviceToHost(initial.data(), d_float, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(final.data(), d_conv, num_elem*sizeof(float)); for (int i = 0; i < num_elem; ++i) { VERIFY_IS_APPROX(initial(i), final(i)); } } void test_gpu_unary(const Eigen::SyclDevice &sycl_device) { int num_elem = 101; float* d_float = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_res_half = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_res_float = (float*)sycl_device.allocate(num_elem * sizeof(float)); Eigen::TensorMap, Eigen::Aligned> gpu_float( d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_half( d_res_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float( d_res_float, num_elem); gpu_float.device(sycl_device) = gpu_float.random() - gpu_float.constant(0.5f); gpu_res_float.device(sycl_device) = gpu_float.abs(); gpu_res_half.device(sycl_device) = gpu_float.cast().abs().cast(); Tensor half_prec(num_elem); Tensor full_prec(num_elem); sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float)); sycl_device.synchronize(); for (int i = 0; i < num_elem; ++i) { std::cout << "Checking unary " << i << std::endl; VERIFY_IS_APPROX(full_prec(i), half_prec(i)); } } void test_gpu_elementwise(const Eigen::SyclDevice &sycl_device) { int num_elem = 101; float* d_float1 = static_cast(sycl_device.allocate(num_elem * sizeof(float))); float* d_float2 = static_cast(sycl_device.allocate(num_elem * sizeof(float))); float* d_res_half = static_cast(sycl_device.allocate(num_elem * sizeof(float))); float* d_res_float = static_cast(sycl_device.allocate(num_elem * sizeof(float))); Eigen::TensorMap, Eigen::Aligned> gpu_float1(d_float1, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_float2(d_float2, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_half(d_res_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float(d_res_float, num_elem); gpu_float1.device(sycl_device) = gpu_float1.random(); gpu_float2.device(sycl_device) = gpu_float2.random(); gpu_res_float.device(sycl_device) = (gpu_float1 + gpu_float2) * gpu_float1; gpu_res_half.device(sycl_device) = ((gpu_float1.cast() + gpu_float2.cast()) * gpu_float1.cast()).cast(); Tensor half_prec(num_elem); Tensor full_prec(num_elem); sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half,num_elem * sizeof(float)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float,num_elem * sizeof(float)); for (int i = 0; i < num_elem; ++i) { std::cout << "Checking elemwise " << i << ": full prec = " << full_prec(i) << " vs half prec = " << half_prec(i) << std::endl; VERIFY_IS_APPROX(static_cast(full_prec(i)), static_cast(half_prec(i))); } } void test_gpu_trancendental(const Eigen::SyclDevice &sycl_device) { int num_elem = 101; float* d_float1 = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_float2 = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_float3 = (float*)sycl_device.allocate(num_elem * sizeof(float)); Eigen::half* d_res1_half = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::half* d_res1_float = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::half* d_res2_half = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::half* d_res2_float = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::half* d_res3_half = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::half* d_res3_float = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::TensorMap, Eigen::Aligned> gpu_float1(d_float1, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_float2(d_float2, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_float3(d_float3, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res1_half(d_res1_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res1_float(d_res1_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res2_half(d_res2_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res2_float(d_res2_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res3_half(d_res3_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res3_float(d_res3_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res4_half(d_res3_half, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res4_float(d_res3_float, num_elem); gpu_float1.device(sycl_device) = gpu_float1.random() - gpu_float1.constant(0.5f); gpu_float2.device(sycl_device) = gpu_float2.random() + gpu_float1.constant(0.5f); gpu_float3.device(sycl_device) = gpu_float3.random(); gpu_res1_float.device(sycl_device) = gpu_float1.exp().cast(); gpu_res2_float.device(sycl_device) = gpu_float2.log().cast(); gpu_res3_float.device(sycl_device) = gpu_float3.log1p().cast(); gpu_res4_float.device(sycl_device) = gpu_float3.expm1().cast(); gpu_res1_half.device(sycl_device) = gpu_float1.cast(); gpu_res1_half.device(sycl_device) = gpu_res1_half.exp(); gpu_res2_half.device(sycl_device) = gpu_float2.cast(); gpu_res2_half.device(sycl_device) = gpu_res2_half.log(); gpu_res3_half.device(sycl_device) = gpu_float3.cast(); gpu_res3_half.device(sycl_device) = gpu_res3_half.log1p(); gpu_res3_half.device(sycl_device) = gpu_float3.cast(); gpu_res3_half.device(sycl_device) = gpu_res3_half.expm1(); Tensor input1(num_elem); Tensor half_prec1(num_elem); Tensor full_prec1(num_elem); Tensor input2(num_elem); Tensor half_prec2(num_elem); Tensor full_prec2(num_elem); Tensor input3(num_elem); Tensor half_prec3(num_elem); Tensor full_prec3(num_elem); sycl_device.memcpyDeviceToHost(input1.data(), d_float1, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(input2.data(), d_float2, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(input3.data(), d_float3, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(half_prec1.data(), d_res1_half, num_elem*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec1.data(), d_res1_float, num_elem*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(half_prec2.data(), d_res2_half, num_elem*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec2.data(), d_res2_float, num_elem*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(half_prec3.data(), d_res3_half, num_elem*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec3.data(), d_res3_float, num_elem*sizeof(Eigen::half)); sycl_device.synchronize(); for (int i = 0; i < num_elem; ++i) { std::cout << "Checking elemwise exp " << i << " input = " << input1(i) << " full = " << full_prec1(i) << " half = " << half_prec1(i) << std::endl; VERIFY_IS_APPROX(full_prec1(i), half_prec1(i)); } for (int i = 0; i < num_elem; ++i) { std::cout << "Checking elemwise log " << i << " input = " << input2(i) << " full = " << full_prec2(i) << " half = " << half_prec2(i) << std::endl; if(std::abs(input2(i)-1.f)<0.05f) // log lacks accuracy nearby 1 VERIFY_IS_APPROX(full_prec2(i)+Eigen::half(0.1f), half_prec2(i)+Eigen::half(0.1f)); else VERIFY_IS_APPROX(full_prec2(i), half_prec2(i)); } for (int i = 0; i < num_elem; ++i) { std::cout << "Checking elemwise plog1 " << i << " input = " << input3(i) << " full = " << full_prec3(i) << " half = " << half_prec3(i) << std::endl; VERIFY_IS_APPROX(full_prec3(i), half_prec3(i)); } } void test_gpu_contractions(const Eigen::SyclDevice &sycl_device) { int rows = 23; int cols = 23; int num_elem = rows*cols; float* d_float1 = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_float2 = (float*)sycl_device.allocate(num_elem * sizeof(float)); Eigen::half* d_res_half = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::half* d_res_float = (Eigen::half*)sycl_device.allocate(num_elem * sizeof(Eigen::half)); Eigen::TensorMap, Eigen::Aligned> gpu_float1( d_float1, rows, cols); Eigen::TensorMap, Eigen::Aligned> gpu_float2( d_float2, rows, cols); Eigen::TensorMap, Eigen::Aligned> gpu_res_half( d_res_half, rows, cols); Eigen::TensorMap, Eigen::Aligned> gpu_res_float( d_res_float, rows, cols); gpu_float1.device(sycl_device) = gpu_float1.random() - gpu_float1.constant(0.5f); gpu_float2.device(sycl_device) = gpu_float2.random() - gpu_float2.constant(0.5f); typedef typename Tensor::DimensionPair DimPair; Eigen::array dims; gpu_res_float.device(sycl_device) = gpu_float1.contract(gpu_float2, dims).cast(); gpu_res_half.device(sycl_device) = gpu_float1.cast().contract(gpu_float2.cast(), dims); Tensor half_prec(rows, cols); Tensor full_prec(rows, cols); sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(Eigen::half)); sycl_device.synchronize(); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { std::cout << "Checking contract " << i << " " << j << full_prec(i, j) << " " << half_prec(i, j) << std::endl; if (numext::abs(full_prec(i, j) - half_prec(i, j)) > Eigen::half(1e-2f)) { VERIFY_IS_APPROX(full_prec(i, j), half_prec(i, j)); } } } } void test_gpu_reductions(const Eigen::SyclDevice &sycl_device, int size1, int size2, int redux) { std::cout << "Reducing " << size1 << " by " << size2 << " tensor along dim " << redux << std::endl; int num_elem = size1*size2; int result_size = (redux == 1 ? size1 : size2); float* d_float = (float*)sycl_device.allocate(num_elem * sizeof(float)); Eigen::half* d_res_half = (Eigen::half*)sycl_device.allocate(result_size * sizeof(Eigen::half)); Eigen::half* d_res_float = (Eigen::half*)sycl_device.allocate(result_size * sizeof(Eigen::half)); Eigen::TensorMap, Eigen::Aligned> gpu_float( d_float, size1, size2); Eigen::TensorMap, Eigen::Aligned> gpu_res_half( d_res_half, result_size); Eigen::TensorMap, Eigen::Aligned> gpu_res_float( d_res_float, result_size); gpu_float.device(sycl_device) = gpu_float.random() * 2.0f; Eigen::array redux_dim = {redux}; gpu_res_float.device(sycl_device) = gpu_float.sum(redux_dim).cast(); gpu_res_half.device(sycl_device) = gpu_float.cast().sum(redux_dim); Tensor half_prec(result_size); Tensor full_prec(result_size); sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half, result_size*sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float, result_size*sizeof(Eigen::half)); sycl_device.synchronize(); for (int i = 0; i < result_size; ++i) { std::cout << "EXPECTED " << full_prec(i) << " GOT " << half_prec(i) << std::endl; VERIFY_IS_APPROX(full_prec(i), half_prec(i)); } } void test_gpu_reductions(const Eigen::SyclDevice &sycl_device) { test_gpu_reductions(sycl_device, 13, 13, 0); test_gpu_reductions(sycl_device, 13, 13, 1); test_gpu_reductions(sycl_device, 35, 36, 0); test_gpu_reductions(sycl_device, 35, 36, 1); test_gpu_reductions(sycl_device, 36, 35, 0); test_gpu_reductions(sycl_device, 36, 35, 1); } void test_gpu_full_reductions(const Eigen::SyclDevice &sycl_device) { int size = 13; int num_elem = size*size; float* d_float = (float*)sycl_device.allocate(num_elem * sizeof(float)); Eigen::half* d_res_half = (Eigen::half*)sycl_device.allocate(1 * sizeof(Eigen::half)); Eigen::half* d_res_float = (Eigen::half*)sycl_device.allocate(1 * sizeof(Eigen::half)); Eigen::TensorMap, Eigen::Aligned> gpu_float( d_float, size, size); Eigen::TensorMap, Eigen::Aligned> gpu_res_half( d_res_half); Eigen::TensorMap, Eigen::Aligned> gpu_res_float( d_res_float); gpu_float.device(sycl_device) = gpu_float.random(); gpu_res_float.device(sycl_device) = gpu_float.sum().cast(); gpu_res_half.device(sycl_device) = gpu_float.cast().sum(); Tensor half_prec; Tensor full_prec; sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half, sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float, sizeof(Eigen::half)); sycl_device.synchronize(); VERIFY_IS_APPROX(full_prec(), half_prec()); gpu_res_float.device(sycl_device) = gpu_float.maximum().cast(); gpu_res_half.device(sycl_device) = gpu_float.cast().maximum(); sycl_device.memcpyDeviceToHost(half_prec.data(), d_res_half, sizeof(Eigen::half)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float, sizeof(Eigen::half)); sycl_device.synchronize(); VERIFY_IS_APPROX(full_prec(), half_prec()); } void test_gpu_forced_evals(const Eigen::SyclDevice &sycl_device) { int num_elem = 101; float* d_float = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_res_half1 = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_res_half2 = (float*)sycl_device.allocate(num_elem * sizeof(float)); float* d_res_float = (float*)sycl_device.allocate(num_elem * sizeof(float)); Eigen::TensorMap, Eigen::Aligned> gpu_float( d_float, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_half1( d_res_half1, num_elem); Eigen::TensorMap, Eigen::Unaligned> gpu_res_half2( d_res_half2, num_elem); Eigen::TensorMap, Eigen::Aligned> gpu_res_float( d_res_float, num_elem); Eigen::array no_bcast; no_bcast[0] = 1; gpu_float.device(sycl_device) = gpu_float.random() - gpu_float.constant(0.5f); gpu_res_float.device(sycl_device) = gpu_float.abs(); gpu_res_half1.device(sycl_device) = gpu_float.cast().abs().eval().cast(); gpu_res_half2.device(sycl_device) = gpu_float.cast().abs().broadcast(no_bcast).eval().cast(); Tensor half_prec1(num_elem); Tensor half_prec2(num_elem); Tensor full_prec(num_elem); sycl_device.memcpyDeviceToHost(half_prec1.data(), d_res_half1, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(half_prec2.data(), d_res_half2, num_elem*sizeof(float)); sycl_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float)); sycl_device.synchronize(); for (int i = 0; i < num_elem; ++i) { std::cout << "Checking forced eval " << i << full_prec(i) << " vs " << half_prec1(i) << " vs " << half_prec2(i) << std::endl; VERIFY_IS_APPROX(full_prec(i), half_prec1(i)); VERIFY_IS_APPROX(full_prec(i), half_prec2(i)); } } EIGEN_DECLARE_TEST(cxx11_tensor_of_float16_sycl) { for (const auto& s : Eigen::get_sycl_supported_devices()) { QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); CALL_SUBTEST_1(test_gpu_numext(sycl_device)); CALL_SUBTEST_1(test_gpu_conversion(sycl_device)); CALL_SUBTEST_1(test_gpu_unary(sycl_device)); CALL_SUBTEST_1(test_gpu_elementwise(sycl_device)); CALL_SUBTEST_1(test_gpu_trancendental(sycl_device)); CALL_SUBTEST_2(test_gpu_contractions(sycl_device)); CALL_SUBTEST_3(test_gpu_reductions(sycl_device)); CALL_SUBTEST_4(test_gpu_full_reductions(sycl_device)); CALL_SUBTEST_5(test_gpu_forced_evals(sycl_device)); } }