// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // // The conversion routines are Copyright (c) Fabian Giesen, 2016. // The original license follows: // // Copyright (c) Fabian Giesen, 2016 // All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Standard 16-bit float type, mostly useful for GPUs. Defines a new // type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with // operator overloads such that it behaves basically as an arithmetic // type. It will be quite slow on CPUs (so it is recommended to stay // in fp32 for CPUs, except for simple parameter conversions, I/O // to disk and the likes), but fast on GPUs. #ifndef EIGEN_HALF_H #define EIGEN_HALF_H // IWYU pragma: private #include "../../InternalHeaderCheck.h" // When compiling with GPU support, the "__half_raw" base class as well as // some other routines are defined in the GPU compiler header files // (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr // As a consequence, we get compile failures when compiling Eigen with // GPU support. Hence the need to disable EIGEN_CONSTEXPR when building // Eigen with GPU support. // Any functions that require `numext::bit_cast` may also not be constexpr, // including any native types when setting via raw bit values. #if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16) #define _EIGEN_MAYBE_CONSTEXPR #else #define _EIGEN_MAYBE_CONSTEXPR constexpr #endif #define F16_PACKET_FUNCTION(PACKET_F, PACKET_F16, METHOD) \ template <> \ EIGEN_UNUSED EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC PACKET_F16 METHOD(const PACKET_F16& _x) { \ return float2half(METHOD(half2float(_x))); \ } namespace Eigen { struct half; namespace half_impl { // We want to use the __half_raw struct from the HIP header file only during the device compile phase. // This is required because of a quirk in the way TensorFlow GPU builds are done. // When compiling TensorFlow source code with GPU support, files that // * contain GPU kernels (i.e. *.cu.cc files) are compiled via hipcc // * do not contain GPU kernels ( i.e. *.cc files) are compiled via gcc (typically) // // Tensorflow uses the Eigen::half type as its FP16 type, and there are functions that // * are defined in a file that gets compiled via hipcc AND // * have Eigen::half as a pass-by-value argument AND // * are called in a file that gets compiled via gcc // // In the scenario described above the caller and callee will see different versions // of the Eigen::half base class __half_raw, and they will be compiled by different compilers // // There appears to be an ABI mismatch between gcc and clang (which is called by hipcc) that results in // the callee getting corrupted values for the Eigen::half argument. // // Making the host side compile phase of hipcc use the same Eigen::half impl, as the gcc compile, resolves // this error, and hence the following convoluted #if condition #if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) // Make our own __half_raw definition that is similar to CUDA's. struct __half_raw { struct construct_from_rep_tag {}; #if (defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE)) // Eigen::half can be used as the datatype for shared memory declarations (in Eigen and TF) // The element type for shared memory cannot have non-trivial constructors // and hence the following special casing (which skips the zero-initilization). // Note that this check gets done even in the host compilation phase, and // hence the need for this EIGEN_DEVICE_FUNC __half_raw() {} #else EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw() : x(0) {} #endif #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) explicit EIGEN_DEVICE_FUNC __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) {} EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, __fp16 rep) : x{rep} {} __fp16 x; #elif defined(EIGEN_HAS_BUILTIN_FLOAT16) explicit EIGEN_DEVICE_FUNC __half_raw(numext::uint16_t raw) : x(numext::bit_cast<_Float16>(raw)) {} EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, _Float16 rep) : x{rep} {} _Float16 x; #else explicit EIGEN_DEVICE_FUNC constexpr __half_raw(numext::uint16_t raw) : x(raw) {} EIGEN_DEVICE_FUNC constexpr __half_raw(construct_from_rep_tag, numext::uint16_t rep) : x{rep} {} numext::uint16_t x; #endif }; #elif defined(EIGEN_HAS_HIP_FP16) // HIP GPU compile phase: nothing to do here. // HIP fp16 header file has a definition for __half_raw #elif defined(EIGEN_HAS_CUDA_FP16) // CUDA GPU compile phase. #if EIGEN_CUDA_SDK_VER < 90000 // In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw typedef __half __half_raw; #endif // defined(EIGEN_HAS_CUDA_FP16) #elif defined(SYCL_DEVICE_ONLY) typedef cl::sycl::half __half_raw; #endif EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x); EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff); EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h); struct half_base : public __half_raw { EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base() {} EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {} #if defined(EIGEN_HAS_GPU_FP16) #if defined(EIGEN_HAS_HIP_FP16) EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); } #elif defined(EIGEN_HAS_CUDA_FP16) #if EIGEN_CUDA_SDK_VER >= 90000 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {} #endif #endif #endif }; } // namespace half_impl // Class definition. struct half : public half_impl::half_base { // Writing this out as separate #if-else blocks to make the code easier to follow // The same applies to most #if-else blocks in this file #if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) // Use the same base class for the following two scenarios // * when compiling without GPU support enabled // * during host compile phase when compiling with GPU support enabled typedef half_impl::__half_raw __half_raw; #elif defined(EIGEN_HAS_HIP_FP16) // Nothing to do here // HIP fp16 header file has a definition for __half_raw #elif defined(EIGEN_HAS_CUDA_FP16) // Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so // (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP! So keeping this within // #if defined(EIGEN_HAS_CUDA_FP16) is needed #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 typedef half_impl::__half_raw __half_raw; #endif #endif EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half() {} EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {} #if defined(EIGEN_HAS_GPU_FP16) #if defined(EIGEN_HAS_HIP_FP16) EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} #elif defined(EIGEN_HAS_CUDA_FP16) #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} #endif #endif #endif #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(__fp16 b) : half(__half_raw(__half_raw::construct_from_rep_tag(), b)) {} #elif defined(EIGEN_HAS_BUILTIN_FLOAT16) explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(_Float16 b) : half(__half_raw(__half_raw::construct_from_rep_tag(), b)) {} #endif explicit EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR half(bool b) : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {} template explicit EIGEN_DEVICE_FUNC half(T val) : half_impl::half_base(half_impl::float_to_half_rtne(static_cast(val))) {} explicit EIGEN_DEVICE_FUNC half(float f) : half_impl::half_base(half_impl::float_to_half_rtne(f)) {} // Following the convention of numpy, converting between complex and // float will lead to loss of imag value. template explicit EIGEN_DEVICE_FUNC half(std::complex c) : half_impl::half_base(half_impl::float_to_half_rtne(static_cast(c.real()))) {} EIGEN_DEVICE_FUNC operator float() const { // NOLINT: Allow implicit conversion to float, because it is lossless. return half_impl::half_to_float(*this); } #if defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE) EIGEN_DEVICE_FUNC operator __half() const { ::__half_raw hr; hr.x = x; return __half(hr); } #endif }; // TODO(majnemer): Get rid of this once we can rely on C++17 inline variables do // solve the ODR issue. namespace half_impl { template struct numeric_limits_half_impl { static constexpr const bool is_specialized = true; static constexpr const bool is_signed = true; static constexpr const bool is_integer = false; static constexpr const bool is_exact = false; static constexpr const bool has_infinity = true; static constexpr const bool has_quiet_NaN = true; static constexpr const bool has_signaling_NaN = true; EIGEN_DIAGNOSTICS(push) EIGEN_DISABLE_DEPRECATED_WARNING static constexpr const std::float_denorm_style has_denorm = std::denorm_present; static constexpr const bool has_denorm_loss = false; EIGEN_DIAGNOSTICS(pop) static constexpr const std::float_round_style round_style = std::round_to_nearest; static constexpr const bool is_iec559 = true; // The C++ standard defines this as "true if the set of values representable // by the type is finite." Half has finite precision. static constexpr const bool is_bounded = true; static constexpr const bool is_modulo = false; static constexpr const int digits = 11; static constexpr const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html static constexpr const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html static constexpr const int radix = std::numeric_limits::radix; static constexpr const int min_exponent = -13; static constexpr const int min_exponent10 = -4; static constexpr const int max_exponent = 16; static constexpr const int max_exponent10 = 4; static constexpr const bool traps = std::numeric_limits::traps; // IEEE754: "The implementer shall choose how tininess is detected, but shall // detect tininess in the same way for all operations in radix two" static constexpr const bool tinyness_before = std::numeric_limits::tinyness_before; static _EIGEN_MAYBE_CONSTEXPR Eigen::half(min)() { return Eigen::half_impl::raw_uint16_to_half(0x0400); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half(max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x1400); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half round_error() { return Eigen::half_impl::raw_uint16_to_half(0x3800); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); } static _EIGEN_MAYBE_CONSTEXPR Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x0001); } }; template constexpr const bool numeric_limits_half_impl::is_specialized; template constexpr const bool numeric_limits_half_impl::is_signed; template constexpr const bool numeric_limits_half_impl::is_integer; template constexpr const bool numeric_limits_half_impl::is_exact; template constexpr const bool numeric_limits_half_impl::has_infinity; template constexpr const bool numeric_limits_half_impl::has_quiet_NaN; template constexpr const bool numeric_limits_half_impl::has_signaling_NaN; EIGEN_DIAGNOSTICS(push) EIGEN_DISABLE_DEPRECATED_WARNING template constexpr const std::float_denorm_style numeric_limits_half_impl::has_denorm; template constexpr const bool numeric_limits_half_impl::has_denorm_loss; EIGEN_DIAGNOSTICS(pop) template constexpr const std::float_round_style numeric_limits_half_impl::round_style; template constexpr const bool numeric_limits_half_impl::is_iec559; template constexpr const bool numeric_limits_half_impl::is_bounded; template constexpr const bool numeric_limits_half_impl::is_modulo; template constexpr const int numeric_limits_half_impl::digits; template constexpr const int numeric_limits_half_impl::digits10; template constexpr const int numeric_limits_half_impl::max_digits10; template constexpr const int numeric_limits_half_impl::radix; template constexpr const int numeric_limits_half_impl::min_exponent; template constexpr const int numeric_limits_half_impl::min_exponent10; template constexpr const int numeric_limits_half_impl::max_exponent; template constexpr const int numeric_limits_half_impl::max_exponent10; template constexpr const bool numeric_limits_half_impl::traps; template constexpr const bool numeric_limits_half_impl::tinyness_before; } // end namespace half_impl } // end namespace Eigen namespace std { // If std::numeric_limits is specialized, should also specialize // std::numeric_limits, std::numeric_limits, and // std::numeric_limits // https://stackoverflow.com/a/16519653/ template <> class numeric_limits : public Eigen::half_impl::numeric_limits_half_impl<> {}; template <> class numeric_limits : public numeric_limits {}; template <> class numeric_limits : public numeric_limits {}; template <> class numeric_limits : public numeric_limits {}; } // end namespace std namespace Eigen { namespace half_impl { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE)) // Note: We deliberately do *not* define this to 1 even if we have Arm's native // fp16 type since GPU half types are rather different from native CPU half types. #define EIGEN_HAS_NATIVE_GPU_FP16 #endif // Intrinsics for native fp16 support. Note that on current hardware, // these are no faster than fp32 arithmetic (you need to use the half2 // versions to get the ALU speed increased), but you do save the // conversion steps back and forth. #if defined(EIGEN_HAS_NATIVE_GPU_FP16) EIGEN_STRONG_INLINE __device__ half operator+(const half& a, const half& b) { #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 return __hadd(::__half(a), ::__half(b)); #else return __hadd(a, b); #endif } EIGEN_STRONG_INLINE __device__ half operator*(const half& a, const half& b) { return __hmul(a, b); } EIGEN_STRONG_INLINE __device__ half operator-(const half& a, const half& b) { return __hsub(a, b); } EIGEN_STRONG_INLINE __device__ half operator/(const half& a, const half& b) { #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 return __hdiv(a, b); #else float num = __half2float(a); float denom = __half2float(b); return __float2half(num / denom); #endif } EIGEN_STRONG_INLINE __device__ half operator-(const half& a) { return __hneg(a); } EIGEN_STRONG_INLINE __device__ half& operator+=(half& a, const half& b) { a = a + b; return a; } EIGEN_STRONG_INLINE __device__ half& operator*=(half& a, const half& b) { a = a * b; return a; } EIGEN_STRONG_INLINE __device__ half& operator-=(half& a, const half& b) { a = a - b; return a; } EIGEN_STRONG_INLINE __device__ half& operator/=(half& a, const half& b) { a = a / b; return a; } EIGEN_STRONG_INLINE __device__ bool operator==(const half& a, const half& b) { return __heq(a, b); } EIGEN_STRONG_INLINE __device__ bool operator!=(const half& a, const half& b) { return __hne(a, b); } EIGEN_STRONG_INLINE __device__ bool operator<(const half& a, const half& b) { return __hlt(a, b); } EIGEN_STRONG_INLINE __device__ bool operator<=(const half& a, const half& b) { return __hle(a, b); } EIGEN_STRONG_INLINE __device__ bool operator>(const half& a, const half& b) { return __hgt(a, b); } EIGEN_STRONG_INLINE __device__ bool operator>=(const half& a, const half& b) { return __hge(a, b); } #endif // EIGEN_HAS_NATIVE_GPU_FP16 #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) && !defined(EIGEN_GPU_COMPILE_PHASE) EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(vaddh_f16(a.x, b.x)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(vmulh_f16(a.x, b.x)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(vsubh_f16(a.x, b.x)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(vdivh_f16(a.x, b.x)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(vnegh_f16(a.x)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) { a = half(vaddh_f16(a.x, b.x)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) { a = half(vmulh_f16(a.x, b.x)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) { a = half(vsubh_f16(a.x, b.x)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) { a = half(vdivh_f16(a.x, b.x)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return vceqh_f16(a.x, b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !vceqh_f16(a.x, b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return vclth_f16(a.x, b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return vcleh_f16(a.x, b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return vcgth_f16(a.x, b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return vcgeh_f16(a.x, b.x); } #elif defined(EIGEN_HAS_BUILTIN_FLOAT16) && !defined(EIGEN_GPU_COMPILE_PHASE) EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(a.x + b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(a.x * b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(a.x - b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(a.x / b.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { return half(-a.x); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) { a = a + b; return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) { a = a * b; return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) { a = a - b; return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) { a = a / b; return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { return a.x == b.x; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return a.x != b.x; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { return a.x < b.x; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { return a.x <= b.x; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { return a.x > b.x; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { return a.x >= b.x; } // We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler, // invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation // of the functions, while the latter can only deal with one of them. #elif !defined(EIGEN_HAS_NATIVE_GPU_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats #if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC) // We need to provide emulated *host-side* FP16 operators for clang. #pragma push_macro("EIGEN_DEVICE_FUNC") #undef EIGEN_DEVICE_FUNC #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_GPU_FP16) #define EIGEN_DEVICE_FUNC __host__ #else // both host and device need emulated ops. #define EIGEN_DEVICE_FUNC __host__ __device__ #endif #endif // Definitions for CPUs and older HIP+CUDA, mostly working through conversion // to/from fp32. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator+(const half& a, const half& b) { return half(float(a) + float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator*(const half& a, const half& b) { return half(float(a) * float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a, const half& b) { return half(float(a) - float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, const half& b) { return half(float(a) / float(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator-(const half& a) { half result; result.x = a.x ^ 0x8000; return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator+=(half& a, const half& b) { a = half(float(a) + float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator*=(half& a, const half& b) { a = half(float(a) * float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator-=(half& a, const half& b) { a = half(float(a) - float(b)); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator/=(half& a, const half& b) { a = half(float(a) / float(b)); return a; } // Non-negative floating point numbers have a monotonic mapping to non-negative integers. // This property allows floating point numbers to be reinterpreted as integers for comparisons, which is useful if there // is no native floating point comparison operator. Floating point signedness is handled by the sign-magnitude // representation, whereas integers typically use two's complement. Converting the bit pattern from sign-magnitude to // two's complement allows the transformed bit patterns be compared as signed integers. All edge cases (+/-0 and +/- // infinity) are handled automatically, except NaN. // // fp16 uses 1 sign bit, 5 exponent bits, and 10 mantissa bits. The bit pattern conveys NaN when all the exponent // bits (5) are set, and at least one mantissa bit is set. The sign bit is irrelevant for determining NaN. To check for // NaN, clear the sign bit and check if the integral representation is greater than 01111100000000. To test // for non-NaN, clear the sign bit and check if the integeral representation is less than or equal to 01111100000000. // convert sign-magnitude representation to two's complement EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int16_t mapToSigned(uint16_t a) { constexpr uint16_t kAbsMask = (1 << 15) - 1; // If the sign bit is set, clear the sign bit and return the (integer) negation. Otherwise, return the input. return (a >> 15) ? -(a & kAbsMask) : a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool isOrdered(const half& a, const half& b) { constexpr uint16_t kInf = ((1 << 5) - 1) << 10; constexpr uint16_t kAbsMask = (1 << 15) - 1; return numext::maxi(a.x & kAbsMask, b.x & kAbsMask) <= kInf; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator==(const half& a, const half& b) { bool result = mapToSigned(a.x) == mapToSigned(b.x); result &= isOrdered(a, b); return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator!=(const half& a, const half& b) { return !(a == b); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(const half& a, const half& b) { bool result = mapToSigned(a.x) < mapToSigned(b.x); result &= isOrdered(a, b); return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(const half& a, const half& b) { bool result = mapToSigned(a.x) <= mapToSigned(b.x); result &= isOrdered(a, b); return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(const half& a, const half& b) { bool result = mapToSigned(a.x) > mapToSigned(b.x); result &= isOrdered(a, b); return result; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(const half& a, const half& b) { bool result = mapToSigned(a.x) >= mapToSigned(b.x); result &= isOrdered(a, b); return result; } #if EIGEN_COMP_CLANG && defined(EIGEN_GPUCC) #pragma pop_macro("EIGEN_DEVICE_FUNC") #endif #endif // Emulate support for half floats // Division by an index. Do it in full float precision to avoid accuracy // issues in converting the denominator to half. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator/(const half& a, Index b) { return half(static_cast(a) / static_cast(b)); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a) { a += half(1); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a) { a -= half(1); return a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a, int) { half original_value = a; ++a; return original_value; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a, int) { half original_value = a; --a; return original_value; } // Conversion routines, including fallbacks for the host or older CUDA. // Note that newer Intel CPUs (Haswell or newer) have vectorized versions of // these in hardware. If we need more performance on older/other CPUs, they are // also possible to vectorize directly. EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) { // We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type // in the hip_fp16 header file, and that will trigger a compile error // On the other hand, having anything but a return statement also triggers a compile error // because this is constexpr function. // Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out // of this catch22 by having separate bodies for GPU / non GPU #if defined(EIGEN_HAS_GPU_FP16) __half_raw h; h.x = x; return h; #else return __half_raw(x); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw& h) { // HIP/CUDA/Default have a member 'x' of type uint16_t. // For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast. // For SYCL, cl::sycl::half is _Float16, so cast directly. #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) return numext::bit_cast(h.x); #elif defined(EIGEN_HAS_BUILTIN_FLOAT16) return numext::bit_cast(h.x); #elif defined(SYCL_DEVICE_ONLY) return numext::bit_cast(h); #else return h.x; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) __half tmp_ff = __float2half(ff); return *(__half_raw*)&tmp_ff; #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) __half_raw h; h.x = static_cast<__fp16>(ff); return h; #elif defined(EIGEN_HAS_BUILTIN_FLOAT16) __half_raw h; h.x = static_cast<_Float16>(ff); return h; #elif defined(EIGEN_HAS_FP16_C) __half_raw h; #if EIGEN_COMP_MSVC // MSVC does not have scalar instructions. h.x = _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(ff), 0), 0); #else h.x = _cvtss_sh(ff, 0); #endif return h; #else uint32_t f_bits = Eigen::numext::bit_cast(ff); const uint32_t f32infty_bits = {255 << 23}; const uint32_t f16max_bits = {(127 + 16) << 23}; const uint32_t denorm_magic_bits = {((127 - 15) + (23 - 10) + 1) << 23}; const uint32_t sign_mask = 0x80000000u; __half_raw o; o.x = static_cast(0x0u); const uint32_t sign = f_bits & sign_mask; f_bits ^= sign; // NOTE all the integer compares in this function can be safely // compiled into signed compares since all operands are below // 0x80000000. Important if you want fast straight SSE2 code // (since there's no unsigned PCMPGTD). if (f_bits >= f16max_bits) { // result is Inf or NaN (all exponent bits set) o.x = (f_bits > f32infty_bits) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf } else { // (De)normalized number or zero if (f_bits < (113 << 23)) { // resulting FP16 is subnormal or zero // use a magic value to align our 10 mantissa bits at the bottom of // the float. as long as FP addition is round-to-nearest-even this // just works. f_bits = Eigen::numext::bit_cast(Eigen::numext::bit_cast(f_bits) + Eigen::numext::bit_cast(denorm_magic_bits)); // and one integer subtract of the bias later, we have our final float! o.x = static_cast(f_bits - denorm_magic_bits); } else { const uint32_t mant_odd = (f_bits >> 13) & 1; // resulting mantissa is odd // update exponent, rounding bias part 1 // Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but // without arithmetic overflow. f_bits += 0xc8000fffU; // rounding bias part 2 f_bits += mant_odd; // take the bits! o.x = static_cast(f_bits >> 13); } } o.x |= static_cast(sign >> 16); return o; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) return __half2float(h); #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16) return static_cast(h.x); #elif defined(EIGEN_HAS_FP16_C) #if EIGEN_COMP_MSVC // MSVC does not have scalar instructions. return _mm_cvtss_f32(_mm_cvtph_ps(_mm_set1_epi16(h.x))); #else return _cvtsh_ss(h.x); #endif #else const float magic = Eigen::numext::bit_cast(static_cast(113 << 23)); const uint32_t shifted_exp = 0x7c00 << 13; // exponent mask after shift uint32_t o_bits = (h.x & 0x7fff) << 13; // exponent/mantissa bits const uint32_t exp = shifted_exp & o_bits; // just the exponent o_bits += (127 - 15) << 23; // exponent adjust // handle exponent special cases if (exp == shifted_exp) { // Inf/NaN? o_bits += (128 - 16) << 23; // extra exp adjust } else if (exp == 0) { // Zero/Denormal? o_bits += 1 << 23; // extra exp adjust // renormalize o_bits = Eigen::numext::bit_cast(Eigen::numext::bit_cast(o_bits) - magic); } o_bits |= (h.x & 0x8000) << 16; // sign bit return Eigen::numext::bit_cast(o_bits); #endif } // --- standard functions --- EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isinf)(const half& a) { #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16) return (numext::bit_cast(a.x) & 0x7fff) == 0x7c00; #else return (a.x & 0x7fff) == 0x7c00; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isnan)(const half& a) { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) return __hisnan(a); #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16) return (numext::bit_cast(a.x) & 0x7fff) > 0x7c00; #else return (a.x & 0x7fff) > 0x7c00; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool(isfinite)(const half& a) { #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) || defined(EIGEN_HAS_BUILTIN_FLOAT16) return (numext::bit_cast(a.x) & 0x7fff) < 0x7c00; #else return (a.x & 0x7fff) < 0x7c00; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) { #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) return half(vabsh_f16(a.x)); #elif defined(EIGEN_HAS_BUILTIN_FLOAT16) half result; result.x = numext::bit_cast<_Float16>(static_cast(numext::bit_cast(a.x) & 0x7FFF)); return result; #else half result; result.x = a.x & 0x7FFF; return result; #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) { #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ defined(EIGEN_HIP_DEVICE_COMPILE) return half(hexp(a)); #else return half(::expf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp2(const half& a) { #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ defined(EIGEN_HIP_DEVICE_COMPILE) return half(hexp2(a)); #else return half(::exp2f(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { return half(numext::expm1(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) { #if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && \ EIGEN_CUDA_ARCH >= 530) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) return half(hlog(a)); #else return half(::logf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { return half(numext::log1p(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { return half(::log10f(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log2(const half& a) { return half(static_cast(EIGEN_LOG2E) * ::logf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) { #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ defined(EIGEN_HIP_DEVICE_COMPILE) return half(hsqrt(a)); #else return half(::sqrtf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) { return half(::powf(float(a), float(b))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan2(const half& a, const half& b) { return half(::atan2f(float(a), float(b))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { return half(::sinf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { return half(::cosf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { return half(::tanf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { return half(::tanhf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) { return half(::asinf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) { return half(::acosf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atan(const half& a) { return half(::atanf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half atanh(const half& a) { return half(::atanhf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) { #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ defined(EIGEN_HIP_DEVICE_COMPILE) return half(hfloor(a)); #else return half(::floorf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) { #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ defined(EIGEN_HIP_DEVICE_COMPILE) return half(hceil(a)); #else return half(::ceilf(float(a))); #endif } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) { return half(::rintf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half round(const half& a) { return half(::roundf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half trunc(const half& a) { return half(::truncf(float(a))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half fmod(const half& a, const half& b) { return half(::fmodf(float(a), float(b))); } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(min)(const half& a, const half& b) { return b < a ? b : a; } EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half(max)(const half& a, const half& b) { return a < b ? b : a; } EIGEN_DEVICE_FUNC inline half fma(const half& a, const half& b, const half& c) { #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) return half(vfmah_f16(c.x, a.x, b.x)); #elif defined(EIGEN_VECTORIZE_AVX512FP16) // Reduces to vfmadd213sh. return half(_mm_cvtsh_h(_mm_fmadd_ph(_mm_set_sh(a.x), _mm_set_sh(b.x), _mm_set_sh(c.x)))); #else // Emulate FMA via float. return half(numext::fma(static_cast(a), static_cast(b), static_cast(c))); #endif } #ifndef EIGEN_NO_IO EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const half& v) { os << static_cast(v); return os; } #endif } // end namespace half_impl // import Eigen::half_impl::half into Eigen namespace // using half_impl::half; namespace internal { template <> struct is_arithmetic { enum { value = true }; }; template <> struct random_impl { enum : int { MantissaBits = 10 }; using Impl = random_impl; static EIGEN_DEVICE_FUNC inline half run(const half& x, const half& y) { float result = Impl::run(x, y, MantissaBits); return half(result); } static EIGEN_DEVICE_FUNC inline half run() { float result = Impl::run(MantissaBits); return half(result); } }; } // end namespace internal template <> struct NumTraits : GenericNumTraits { enum { IsSigned = true, IsInteger = false, IsComplex = false, RequireInitialization = false }; EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() { return half_impl::raw_uint16_to_half(0x0800); } EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return half_impl::raw_uint16_to_half(0x211f); // Eigen::half(1e-2f); } EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() { return half_impl::raw_uint16_to_half(0x7bff); } EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() { return half_impl::raw_uint16_to_half(0xfbff); } EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() { return half_impl::raw_uint16_to_half(0x7c00); } EIGEN_DEVICE_FUNC _EIGEN_MAYBE_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { return half_impl::raw_uint16_to_half(0x7e00); } }; } // end namespace Eigen #undef _EIGEN_MAYBE_CONSTEXPR namespace Eigen { namespace numext { #if defined(EIGEN_GPU_COMPILE_PHASE) template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) { return (half_impl::isnan)(h); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) { return (half_impl::isinf)(h); } template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) { return (half_impl::isfinite)(h); } #endif template <> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast(const uint16_t& src) { return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src)); } template <> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast(const Eigen::half& src) { return Eigen::half_impl::raw_half_as_uint16(src); } } // namespace numext } // namespace Eigen // Add the missing shfl* intrinsics. // The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300. // CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__)) // // HIP and CUDA prior to SDK 9.0 define // __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float // CUDA since 9.0 deprecates those and instead defines // __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync, // with native support for __half and __nv_bfloat16 // // Note that the following are __device__ - only functions. #if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 300)) || defined(EIGEN_HIPCC) #if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 90000 __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_sync(unsigned mask, Eigen::half var, int srcLane, int width = warpSize) { const __half h = var; return static_cast(__shfl_sync(mask, h, srcLane, width)); } __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up_sync(unsigned mask, Eigen::half var, unsigned int delta, int width = warpSize) { const __half h = var; return static_cast(__shfl_up_sync(mask, h, delta, width)); } __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down_sync(unsigned mask, Eigen::half var, unsigned int delta, int width = warpSize) { const __half h = var; return static_cast(__shfl_down_sync(mask, h, delta, width)); } __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor_sync(unsigned mask, Eigen::half var, int laneMask, int width = warpSize) { const __half h = var; return static_cast(__shfl_xor_sync(mask, h, laneMask, width)); } #else // HIP or CUDA SDK < 9.0 __device__ EIGEN_STRONG_INLINE Eigen::half __shfl(Eigen::half var, int srcLane, int width = warpSize) { const int ivar = static_cast(Eigen::numext::bit_cast(var)); return Eigen::numext::bit_cast(static_cast(__shfl(ivar, srcLane, width))); } __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up(Eigen::half var, unsigned int delta, int width = warpSize) { const int ivar = static_cast(Eigen::numext::bit_cast(var)); return Eigen::numext::bit_cast(static_cast(__shfl_up(ivar, delta, width))); } __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down(Eigen::half var, unsigned int delta, int width = warpSize) { const int ivar = static_cast(Eigen::numext::bit_cast(var)); return Eigen::numext::bit_cast(static_cast(__shfl_down(ivar, delta, width))); } __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width = warpSize) { const int ivar = static_cast(Eigen::numext::bit_cast(var)); return Eigen::numext::bit_cast(static_cast(__shfl_xor(ivar, laneMask, width))); } #endif // HIP vs CUDA #endif // __shfl* // ldg() has an overload for __half_raw, but we also need one for Eigen::half. #if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 350)) || defined(EIGEN_HIPCC) EIGEN_STRONG_INLINE __device__ Eigen::half __ldg(const Eigen::half* ptr) { return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast(ptr))); } #endif // __ldg #if EIGEN_HAS_STD_HASH namespace std { template <> struct hash { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { return static_cast(Eigen::numext::bit_cast(a)); } }; } // end namespace std #endif namespace Eigen { namespace internal { template <> struct cast_impl { EIGEN_DEVICE_FUNC static inline half run(const float& a) { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) return __float2half(a); #else return half(a); #endif } }; template <> struct cast_impl { EIGEN_DEVICE_FUNC static inline half run(const int& a) { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) return __float2half(static_cast(a)); #else return half(static_cast(a)); #endif } }; template <> struct cast_impl { EIGEN_DEVICE_FUNC static inline float run(const half& a) { #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) return __half2float(a); #else return static_cast(a); #endif } }; } // namespace internal } // namespace Eigen #endif // EIGEN_HALF_H